

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/zcash-docs/checkouts/latest/doc/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/zcash-docs/checkouts/latest/doc/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Zcash Contributors

Jack Grigg (392)
Simon Liu (254)
Sean Bowe (185)
Daira Hopwood (80)
Taylor Hornby (65)
Wladimir J. van der Laan (58)
Jonas Schnelli (48)
Jay Graber (47)
Kevin Gallagher (38)
Cory Fields (15)
Pieter Wuille (14)
Nathan Wilcox (10)
nomnombtc (9)
fanquake (5)
Paige Peterson (5)
MarcoFalke (5)
Johnathan Corgan (5)
Gregory Maxwell (5)
Philip Kaufmann (4)
Peter Todd (4)
Patrick Strateman (4)
Matt Corallo (4)
Karl-Johan Alm (4)
Jeff Garzik (4)
David Mercer (4)
Daniel Cousens (4)
lpescher (3)
Pavel Janík (3)
Alfie John (3)
paveljanik (2)
aniemerg (2)
Scott (2)
Robert C. Seacord (2)
Luke Dashjr (2)
João Barbosa (2)
Joe Turgeon (2)
Jack Gavigan (2)
ITH4Coinomia (2)
Gavin Andresen (2)
zathras-crypto (1)
unsystemizer (1)
mruddy (1)
mrbandrews (1)
kazcw (1)
isle2983 (1)
instagibbs (1)
dexX7 (1)
calebogden (1)
ayleph (1)
Tom Ritter (1)
Stephen (1)
S. Matthew English (1)
Pavel Vasin (1)
Paul Georgiou (1)
Paragon Initiative Enterprises, LLC (1)
Nathaniel Mahieu (1)
Murilo Santana (1)
Matt Quinn (1)
Louis Nyffenegger (1)
Leo Arias (1)
Lars-Magnus Skog (1)
Jorge Timón (1)
Jeffrey Walton (1)
Ian Kelling (1)
Gaurav Rana (1)
Forrest Voight (1)
Florian Schmaus (1)
Ethan Heilman (1)
Eran Tromer (1)
Daniel Kraft (1)
Christian von Roques (1)
Chirag Davé (1)
Casey Rodarmor (1)
Cameron Boehmer (1)
Bryan Stitt (1)
Bob McElrath (1)
Bitcoin Error Log (1)
Allan Niemerg (1)
Alex van der Peet (1)
Alex (1)
Adam Weiss (1)
Adam Brown (1)
4ZEC (1)

Zcash Payment API

Overview

Zcash extends the Bitcoin Core API with new RPC calls to support private Zcash payments.

Zcash payments make use of two address formats:

	taddr - an address for transparent funds (just like a Bitcoin address, value stored in UTXOs)

	zaddr - an address for private funds (value stored in objects called notes)

When transferring funds from one taddr to another taddr, you can use either the existing Bitcoin RPC calls or the new Zcash RPC calls.

When a transfer involves zaddrs, you must use the new Zcash RPC calls.

Compatibility with Bitcoin Core

Zcash supports all commands in the Bitcoin Core API (as of version 0.11.2). Where applicable, Zcash will extend commands in a backwards-compatible way to enable additional functionality.

We do not recommend use of accounts which are now deprecated in Bitcoin Core. Where the account parameter exists in the API, please use “” as its value, otherwise an error will be returned.

To support multiple users in a single node’s wallet, consider using getnewaddress or z_getnewaddress to obtain a new address for each user. Also consider mapping multiple addresses to each user.

List of Zcash API commands

Optional parameters are denoted in [square brackets].

RPC calls by category:

	Accounting: z_getbalance, z_gettotalbalance

	Addresses : z_getnewaddress, z_listaddresses, z_validateaddress

	Keys : z_exportkey, z_importkey, z_exportwallet, z_importwallet

	Operation: z_getoperationresult, z_getoperationstatus, z_listoperationids

	Payment : z_listreceivedbyaddress, z_sendmany

RPC parameter conventions:

	taddr : Transparent address

	zaddr : Private address

	address : Accepts both private and transparent addresses.

	amount : JSON format double-precision number with 1 ZC expressed as 1.00000000.

	memo : Metadata expressed in hexadecimal format. Limited to 512 bytes, the current size of the memo field of a private transaction. Zero padding is automatic.

Accounting

Command | Parameters | Description
— | — | —
z_getbalance| address [minconf=1] | Returns the balance of a taddr or zaddr belonging to the node’s wallet.Optionally set the minimum number of confirmations a private or transaction transaction must have in order to be included in the balance. Use 0 to count unconfirmed transactions.
z_gettotalbalance| [minconf=1] | Return the total value of funds stored in the node’s wallet.Optionally set the minimum number of confirmations a private or transparent transaction must have in order to be included in the balance. Use 0 to count unconfirmed transactions.Output:{“transparent” : 1.23,“private” : 4.56,“total” : 5.79}

 <no title>

	zcash.conf: contains configuration settings for zcashd

	zcashd.pid: stores the process id of zcashd while running

	blocks/blk000??.dat: block data (custom, 128 MiB per file)

	blocks/rev000??.dat; block undo data (custom)

	blocks/index/*; block index (LevelDB)

	chainstate/*; block chain state database (LevelDB)

	database/*: BDB database environment

	db.log: wallet database log file

	debug.log: contains debug information and general logging generated by zcashd

	fee_estimates.dat: stores statistics used to estimate minimum transaction fees and priorities required for confirmation

	peers.dat: peer IP address database (custom format)

	wallet.dat: personal wallet (BDB) with keys and transactions

	.cookie: session RPC authentication cookie (written at start when cookie authentication is used, deleted on shutdown): since 0.12.0

	onion_private_key: cached Tor hidden service private key for -listenonion: since 0.12.0

 Security Warnings

Security Warnings

Security Audit

Zcash has been subjected to a formal third-party security review. For security
announcements, audit results and other general security information, see
https://z.cash/support/security.html

x86-64 Linux Only

There are known bugs [https://github.com/scipr-lab/libsnark/issues/26] which
make proving keys generated on 64-bit systems unusable on 32-bit and big-endian
systems. It’s unclear if a warning will be issued in this case, or if the
proving system will be silently compromised.

Wallet Encryption

Wallet encryption is disabled, for several reasons:

	Encrypted wallets are unable to correctly detect shielded spends (due to the
nature of unlinkability of JoinSplits) and can incorrectly show larger
available shielded balances until the next time the wallet is unlocked. This
problem was not limited to failing to recognize the spend; it was possible for
the shown balance to increase by the amount of change from a spend, without
deducting the spent amount.

	While encrypted wallets prevent spending of funds, they do not maintain the
shielding properties of JoinSplits (due to the need to detect spends). That
is, someone with access to an encrypted wallet.dat has full visibility of
your entire transaction graph (other than newly-detected spends, which suffer
from the earlier issue).

	We were concerned about the resistance of the algorithm used to derive wallet
encryption keys (inherited from Bitcoin [https://bitcoin.org/en/secure-your-wallet])
to dictionary attacks by a powerful attacker. If and when we re-enable wallet
encryption, it is likely to be with a modern passphrase-based key derivation
algorithm designed for greater resistance to dictionary attack, such as Argon2i.

You should use full-disk encryption (or encryption of your home directory) to
protect your wallet at rest, and should assume (even unprivileged) users who are
runnng on your OS can read your wallet.dat file.

Side-Channel Attacks

This implementation of Zcash is not resistant to side-channel attacks. You
should assume (even unprivileged) users who are running on the hardware, or who
are physically near the hardware, that your zcashd process is running on will
be able to:

	Determine the values of your secret spending keys, as well as which notes you
are spending, by observing cache side-channels as you perform a JoinSplit
operation. This is due to probable side-channel leakage in the libsnark
proving machinery.

	Determine which notes you own by observing cache side-channel information
leakage from the incremental witnesses as they are updated with new notes.

	Determine which notes you own by observing the trial decryption process of
each note ciphertext on the blockchain.

You should ensure no other users have the ability to execute code (even
unprivileged) on the hardware your zcashd process runs on until these
vulnerabilities are fully analyzed and fixed.

REST Interface

The REST interface is a feature inherited from upstream Bitcoin. By default,
it is disabled. We do not recommend you enable it until it has undergone a
security review.

RPC Interface

Users should choose a strong RPC password. If no RPC username and password are set, zcashd will not start and will print an error message with a suggestion for a strong random password. If the client knows the RPC password, they have at least full access to the node. In addition, certain RPC commands can be misused to overwrite files and/or take over the account that is running zcashd. (In the future we may restrict these commands, but full node access – including the ability to spend from and export keys held by the wallet – would still be possible unless wallet methods are disabled.)

Users should also refrain from changing the default setting that only allows RPC connections from localhost. Allowing connections from remote hosts would enable a MITM to execute arbitrary RPC commands, which could lead to compromise of the account running zcashd and loss of funds. For multi-user services that use one or more zcashd instances on the backend, the parameters passed in by users should be controlled to prevent confused-deputy attacks which could spend from any keys held by that zcashd.

Block Chain Reorganization: Major Differences

Users should be aware of new behavior in Zcash that differs significantly from Bitcoin: in the case of a block chain reorganization, Bitcoin’s coinbase maturity rule helps to ensure that any reorganization shorter than the maturity interval will not invalidate any of the rolled-back transactions. Zcash keeps Bitcoin’s 100-block maturity interval for generation transactions, but because JoinSplits must be anchored within a block, this provides more limited protection against transactions becoming invalidated. In the case of a block chain reorganization for Zcash, all JoinSplits which were anchored within the reorganization interval and any transactions that depend on them will become invalid, rolling back transactions and reverting funds to the original owner. The transaction rebroadcast mechanism inherited from Bitcoin will not successfully rebroadcast transactions depending on invalidated JoinSplits if the anchor needs to change. The creator of an invalidated JoinSplit, as well as the creators of all transactions dependent on it, must rebroadcast the transactions themselves.

Receivers of funds from a JoinSplit can mitigate the risk of relying on funds received from transactions that may be rolled back by using a higher minconf (minimum number of confirmations).

Logging z_* RPC calls

The option -debug=zrpc covers logging of the z_* calls. This will reveal information about private notes which you might prefer not to disclose. For example, when calling z_sendmany to create a shielded transaction, input notes are consumed and new output notes are created.

The option -debug=zrpcunsafe covers logging of sensitive information in z_* calls which you would only need for debugging and audit purposes. For example, if you want to examine the memo field of a note being spent.

Private spending keys for z addresses are never logged.

Potentially-Missing Required Modifications

In addition to potential mistakes in code we added to Bitcoin Core, and
potential mistakes in our modifications to Bitcoin Core, it is also possible
that there were potential changes we were supposed to make to Bitcoin Core but
didn’t, either because we didn’t even consider making those changes, or we ran
out of time. We have brainstormed and documented a variety of such possibilities
in issue #826 [https://github.com/zcash/zcash/issues/826], and believe that we
have changed or done everything that was necessary for the 1.0.0 launch. Users
may want to review this list themselves.

 Expectations for DNS Seed operators

Expectations for DNS Seed operators

Zcash attempts to minimize the level of trust in DNS seeds,
but DNS seeds still pose a small amount of risk for the network.
As such, DNS seeds must be run by entities which have some minimum
level of trust within the Zcash community.

Other implementations of Zcash software may also use the same
seeds and may be more exposed. In light of this exposure, this
document establishes some basic expectations for operating DNS seeds.

	A DNS seed operating organization or person is expected to follow good
host security practices, maintain control of applicable infrastructure,
and not sell or transfer control of the DNS seed. Any hosting services
contracted by the operator are equally expected to uphold these expectations.

	The DNS seed results must consist exclusively of fairly selected and
functioning Zcash nodes from the public network to the best of the
operator’s understanding and capability.

	For the avoidance of doubt, the results may be randomized but must not
single out any group of hosts to receive different results unless due to an
urgent technical necessity and disclosed.

	The results may not be served with a DNS TTL of less than one minute.

	Any logging of DNS queries should be only that which is necessary
for the operation of the service or urgent health of the Zcash
network and must not be retained longer than necessary nor disclosed
to any third party.

	Information gathered as a result of the operators node-spidering
(not from DNS queries) may be freely published or retained, but only
if this data was not made more complete by biasing node connectivity
(a violation of expectation (1)).

	Operators are encouraged, but not required, to publicly document the
details of their operating practices.

	A reachable email contact address must be published for inquiries
related to the DNS seed operation.

If these expectations cannot be satisfied the operator should discontinue
providing services and contact the active Zcash development team as well as
creating an issue in the Zcash repository [https://github.com/zcash/zcash].

Behavior outside of these expectations may be reasonable in some
situations but should be discussed in public in advance.

See also

	zcash-seeder [https://github.com/zcash/zcash-seeder] is a reference
implementation of a DNS seed.

 Compiling/running automated tests

Compiling/running automated tests

Automated tests will be automatically compiled if dependencies were met in configure
and tests weren’t explicitly disabled.

There are two scripts for running tests:

	qa/zcash/full-test-suite.sh, to run the main test suite

	qa/pull-tester/rpc-tests.sh, to run the RPC tests.

The main test suite uses two different testing frameworks. Tests using the Boost
framework are under src/test/; tests using the Google Test/Google Mock
framework are under src/gtest/ and src/wallet/gtest/. The latter framework
is preferred for new Zcash unit tests.

RPC tests are implemented in Python under the qa/rpc-tests/ directory.

 Release Process

Release Process

Meta: There should always be a single release engineer to disambiguate responsibility.

Pre-release

The following should have been checked well in advance of the release:

	All dependencies have been updated as appropriate:
	BDB

	Boost

	ccache

	libgmp

	libsnark (upstream of our fork)

	libsodium

	miniupnpc

	OpenSSL

Release process

A. Define the release version as:

$ ZCASH_RELEASE=MAJOR.MINOR.REVISION(-BUILD_STRING)

Example:

$ ZCASH_RELEASE=1.0.0-beta2

Also, the following commands use the ZCASH_RELEASE_PREV bash variable for the
previous release:

$ ZCASH_RELEASE_PREV=1.0.0-beta1

B. Create a new release branch / github PR

B1. Check that you are up-to-date with current master, then create a release branch.

B2. Update (commit) version in sources.

README.md
src/clientversion.h
configure.ac
contrib/gitian-descriptors/gitian-linux.yml

In configure.ac and clientversion.h:

	Increment CLIENT_VERSION_BUILD according to the following schema:
	0-24: 1.0.0-beta1-1.0.0-beta25

	25-49: 1.0.0-rc1-1.0.0-rc25

	50: 1.0.0

	51-99: 1.0.0-1-1.0.0-49

	(CLIENT_VERSION_REVISION rolls over)

	0-24: 1.0.1-beta1-1.0.1-beta25

	Change CLIENT_VERSION_IS_RELEASE to false while Zcash is in beta-test phase.

If this release changes the behavior of the protocol or fixes a serious bug, we may
also wish to change the PROTOCOL_VERSION in version.h.

Commit these changes. (Be sure to do this before building, or else the built binary will include the flag -dirty)

Build by running ./zcutil/build.sh.

Then perform the following command:

$ bash contrib/devtools/gen-manpages.sh

Commit the changes.

B3. Generate release notes

Run the release-notes.py script to generate release notes and update authors.md file. For example:

$ python zcutil/release-notes.py --version $ZCASH_RELEASE

Add the newly created release notes to the Git repository:

$ git add doc/release-notes/release-notes-$ZCASH_RELEASE.md

Update the Debian package changelog:

export DEBVERSION="${ZCASH_RELEASE}"
export DEBEMAIL="${DEBEMAIL:-team@z.cash}"
export DEBFULLNAME="${DEBFULLNAME:-Zcash Company}"

dch -v $DEBVERSION -D jessie -c contrib/debian/changelog

(dch comes from the devscripts package.)

B4. Change the network magics

If this release breaks backwards compatibility, change the network magic
numbers. Set the four pchMessageStart in CTestNetParams in chainparams.cpp
to random values.

B5. Merge the previous changes

Do the normal pull-request, review, testing process for this release PR.

C. Verify code artifact hosting

C1. Ensure depends tree is working

https://ci.z.cash/builders/depends-sources

C2. Ensure public parameters work

Run ./fetch-params.sh.

D. Make tag for the newly merged result

Checkout master and pull the latest version to ensure master is up to date with the release PR which was merged in before.

Check the last commit on the local and remote versions of master to make sure they are the same.

Then create the git tag:

$ git tag -s v${ZCASH_RELEASE}
$ git push origin v${ZCASH_RELEASE}

E. Deploy testnet

Notify the Zcash DevOps engineer/sysadmin that the release has been tagged. They update some variables in the company’s automation code and then run an Ansible playbook, which:

	builds Zcash based on the specified branch

	deploys it as a public service (e.g. betatestnet.z.cash, mainnet.z.cash)

	often the same server can be re-used, and the role idempotently handles upgrades, but if not then they also need to update DNS records

	possible manual steps: blowing away the testnet3 dir, deleting old parameters, restarting DNS seeder

Then, verify that nodes can connect to the testnet server, and update the guide on the wiki to ensure the correct hostname is listed in the recommended zcash.conf.

F. Update the 1.0 User Guide

G. Publish the release announcement (blog, zcash-dev, slack)

G1. Check in with users who opened issues that were resolved in the release

Contact all users who opened user support issues that were resolved in the release, and ask them if the release fixes or improves their issue.

H. Make and deploy deterministic builds

	Run the Gitian deterministic build environment [https://github.com/zcash/zcash-gitian]

	Compare the uploaded build manifests on gitian.sigs [https://github.com/zcash/gitian.sigs]

	If all is well, the DevOps engineer will build the Debian packages and update the
apt.z.cash package repository [https://apt.z.cash].

I. Celebrate

missing steps

Zcash still needs:

	thorough pre-release testing (presumably more thorough than standard PR tests)

	automated release deployment (e.g.: updating build-depends mirror, deploying testnet, etc...)

 Sample init scripts and service configuration for bitcoind

 *** Warning: This document has not been updated for Zcash and may be inaccurate. ***

Sample init scripts and service configuration for bitcoind

Sample scripts and configuration files for systemd, Upstart and OpenRC
can be found in the contrib/init folder.

contrib/init/bitcoind.service: systemd service unit configuration
contrib/init/bitcoind.openrc: OpenRC compatible SysV style init script
contrib/init/bitcoind.openrcconf: OpenRC conf.d file
contrib/init/bitcoind.conf: Upstart service configuration file
contrib/init/bitcoind.init: CentOS compatible SysV style init script

	Service User

All three startup configurations assume the existence of a “bitcoin” user
and group. They must be created before attempting to use these scripts.

	Configuration

At a bare minimum, bitcoind requires that the rpcpassword setting be set
when running as a daemon. If the configuration file does not exist or this
setting is not set, bitcoind will shutdown promptly after startup.

This password does not have to be remembered or typed as it is mostly used
as a fixed token that bitcoind and client programs read from the configuration
file, however it is recommended that a strong and secure password be used
as this password is security critical to securing the wallet should the
wallet be enabled.

If bitcoind is run with “-daemon” flag, and no rpcpassword is set, it will
print a randomly generated suitable password to stderr. You can also
generate one from the shell yourself like this:

bash -c ‘tr -dc a-zA-Z0-9 < /dev/urandom | head -c32 && echo’

For an example configuration file that describes the configuration settings,
see contrib/debian/examples/bitcoin.conf.

	Paths

All three configurations assume several paths that might need to be adjusted.

Binary: /usr/bin/bitcoind
Configuration file: /etc/bitcoin/bitcoin.conf
Data directory: /var/lib/bitcoind
PID file: /var/run/bitcoind/bitcoind.pid (OpenRC and Upstart)
/var/lib/bitcoind/bitcoind.pid (systemd)
Lock file: /var/lock/subsys/bitcoind (CentOS)

The configuration file, PID directory (if applicable) and data directory
should all be owned by the bitcoin user and group. It is advised for security
reasons to make the configuration file and data directory only readable by the
bitcoin user and group. Access to bitcoin-cli and other bitcoind rpc clients
can then be controlled by group membership.

	Installing Service Configuration

4a) systemd

Installing this .service file consists of just copying it to
/usr/lib/systemd/system directory, followed by the command
“systemctl daemon-reload” in order to update running systemd configuration.

To test, run “systemctl start bitcoind” and to enable for system startup run
“systemctl enable bitcoind”

4b) OpenRC

Rename bitcoind.openrc to bitcoind and drop it in /etc/init.d. Double
check ownership and permissions and make it executable. Test it with
“/etc/init.d/bitcoind start” and configure it to run on startup with
“rc-update add bitcoind”

4c) Upstart (for Debian/Ubuntu based distributions)

Drop bitcoind.conf in /etc/init. Test by running “service bitcoind start”
it will automatically start on reboot.

NOTE: This script is incompatible with CentOS 5 and Amazon Linux 2014 as they
use old versions of Upstart and do not supply the start-stop-daemon utility.

4d) CentOS

Copy bitcoind.init to /etc/init.d/bitcoind. Test by running “service bitcoind start”.

Using this script, you can adjust the path and flags to the bitcoind program by
setting the BITCOIND and FLAGS environment variables in the file
/etc/sysconfig/bitcoind. You can also use the DAEMONOPTS environment variable here.

	Auto-respawn

Auto respawning is currently only configured for Upstart and systemd.
Reasonable defaults have been chosen but YMMV.

 Translation Strings Policy

 *** Warning: This document has not been updated for Zcash and may be inaccurate. ***

Translation Strings Policy

This document provides guidelines for internationalization of the Bitcoin Core software.

How to translate?

To mark a message as translatable

	In non-GUI source code (under src): use _("...")

No internationalization is used for e.g. developer scripts outside src.

Strings to be translated

On a high level, these strings are to be translated:

	GUI strings, anything that appears in a dialog or window

	Command-line option documentation

GUI strings

Anything that appears to the user in the GUI is to be translated. This includes labels, menu items, button texts, tooltips and window titles.
This includes messages passed to the GUI through the UI interface through InitMessage, ThreadSafeMessageBox or ShowProgress.

Command-line options

Documentation for the command line options in the output of --help should be translated as well.

Make sure that default values do not end up in the string, but use string formatting like strprintf(_("Threshold for disconnecting misbehaving peers (default: %u)"), 100). Putting default values in strings has led to accidental translations in the past, and forces the string to be retranslated every time the value changes.

Do not translate messages that are only shown to developers, such as those that only appear when --help-debug is used.

General recommendations

Avoid unnecessary translation strings

Try not to burden translators with translating messages that are e.g. slight variations of other messages.
In the GUI, avoid the use of text where an icon or symbol will do.
Make sure that placeholder texts in forms don’t end up in the list of strings to be translated (use <string notr="true">).

Make translated strings understandable

Try to write translation strings in an understandable way, for both the user and the translator. Avoid overly technical or detailed messages

Do not translate internal errors

Do not translate internal errors, or log messages, or messages that appear on the RPC interface. If an error is to be shown to the user,
use a generic message, then log the detailed message to the log. E.g. “Error: A fatal internal error occurred, see debug.log for details”.
This helps troubleshooting; if the error is the same for everyone, the likelihood is increased that it can be found using a search engine.

Avoid fragments

Avoid dividing up a message into fragments. Translators see every string separately, so may misunderstand the context if the messages are not self-contained.

Avoid HTML in translation strings

There have been difficulties with use of HTML in translation strings; translators should not be able to accidentally affect the formatting of messages.
This may sometimes be at conflict with the recommendation in the previous section.

String freezes

During a string freeze (often before a major release), no translation strings are to be added, modified or removed.

This can be checked by executing make translate in the src directory, then verifying that bitcoin_en.ts remains unchanged.

 Block and Transaction Broadcasting With ZeroMQ

Block and Transaction Broadcasting With ZeroMQ

ZeroMQ [http://zeromq.org/] is a lightweight wrapper around TCP
connections, inter-process communication, and shared-memory,
providing various message-oriented semantics such as publish/subcribe,
request/reply, and push/pull.

The Zcash daemon can be configured to act as a trusted “border
router”, implementing the zcash wire protocol and relay, making
consensus decisions, maintaining the local blockchain database,
broadcasting locally generated transactions into the network, and
providing a queryable RPC interface to interact on a polled basis for
requesting blockchain related data. However, there exists only a
limited service to notify external software of events like the arrival
of new blocks or transactions.

The ZeroMQ facility implements a notification interface through a set
of specific notifiers. Currently there are notifiers that publish
blocks and transactions. This read-only facility requires only the
connection of a corresponding ZeroMQ subscriber port in receiving
software; it is not authenticated nor is there any two-way protocol
involvement. Therefore, subscribers should validate the received data
since it may be out of date, incomplete or even invalid.

ZeroMQ sockets are self-connecting and self-healing; that is,
connections made between two endpoints will be automatically restored
after an outage, and either end may be freely started or stopped in
any order.

Because ZeroMQ is message oriented, subscribers receive transactions
and blocks all-at-once and do not need to implement any sort of
buffering or reassembly.

Prerequisites

The ZeroMQ feature in Zcash requires ZeroMQ API version 4.x or
newer, which you will need to install if you are not using the depends
system. Typically, it is packaged by distributions as something like
libzmq5-dev. The C++ wrapper for ZeroMQ is not needed.

In order to run the example Python client scripts in contrib/ one must
also install python-zmq, though this is not necessary for daemon
operation.

Enabling

By default, the ZeroMQ feature is automatically compiled in if the
necessary prerequisites are found. To disable, use –disable-zmq
during the configure step of building zcashd:

$./configure --disable-zmq (other options)

To actually enable operation, one must set the appropriate options on
the commandline or in the configuration file.

Usage

Currently, the following notifications are supported:

-zmqpubhashtx=address
-zmqpubhashblock=address
-zmqpubrawblock=address
-zmqpubrawtx=address

The socket type is PUB and the address must be a valid ZeroMQ socket
address. The same address can be used in more than one notification.

For instance:

$ zcashd -zmqpubhashtx=tcp://127.0.0.1:28332 \
 -zmqpubrawtx=ipc:///tmp/zcashd.tx.raw

Each PUB notification has a topic and body, where the header
corresponds to the notification type. For instance, for the
notification -zmqpubhashtx the topic is hashtx (no null
terminator) and the body is the hexadecimal transaction hash (32
bytes).

These options can also be provided in zcash.conf.

ZeroMQ endpoint specifiers for TCP (and others) are documented in the
ZeroMQ API [http://api.zeromq.org/4-0:_start].

Client side, then, the ZeroMQ subscriber socket must have the
ZMQ_SUBSCRIBE option set to one or either of these prefixes (for
instance, just hash); without doing so will result in no messages
arriving. Please see contrib/zmq/zmq_sub.py for a working example.

Remarks

From the perspective of zcashd, the ZeroMQ socket is write-only; PUB
sockets don’t even have a read function. Thus, there is no state
introduced into zcashd directly. Furthermore, no information is
broadcast that wasn’t already received from the public P2P network.

No authentication or authorization is done on connecting clients; it
is assumed that the ZeroMQ port is exposed only to trusted entities,
using other means such as firewalling.

Note that when the block chain tip changes, a reorganisation may occur
and just the tip will be notified. It is up to the subscriber to
retrieve the chain from the last known block to the new tip.

There are several possibilities that ZMQ notification can get lost
during transmission depending on the communication type your are
using. Zcashd appends an up-counting sequence number to each
notification which allows listeners to detect lost notifications.

 Coding

Coding

Various coding styles have been used during the history of the codebase,
and the result is not very consistent. However, we’re now trying to converge to
a single style, so please use it in new code. Old code will be converted
gradually.

	Basic rules specified in src/.clang-format. Use a recent clang-format-3.5 to format automatically.
	Braces on new lines for namespaces, classes, functions, methods.

	Braces on the same line for everything else.

	4 space indentation (no tabs) for every block except namespaces.

	No indentation for public/protected/private or for namespaces.

	No extra spaces inside parenthesis; don’t do (this)

	No space after function names; one space after if, for and while.

Block style example:

namespace foo
{
class Class
{
 bool Function(char* psz, int n)
 {
 // Comment summarising what this section of code does
 for (int i = 0; i < n; i++) {
 // When something fails, return early
 if (!Something())
 return false;
 ...
 }

 // Success return is usually at the end
 return true;
 }
}
}

Doxygen comments

To facilitate the generation of documentation, use doxygen-compatible comment blocks for functions, methods and fields.

For example, to describe a function use:

/**
 * ... text ...
 * @param[in] arg1 A description
 * @param[in] arg2 Another argument description
 * @pre Precondition for function...
 */
bool function(int arg1, const char *arg2)

A complete list of @xxx commands can be found at http://www.stack.nl/~dimitri/doxygen/manual/commands.html.
As Doxygen recognizes the comments by the delimiters (/** and */ in this case), you don’t
need to provide any commands for a comment to be valid; just a description text is fine.

To describe a class use the same construct above the class definition:

/**
 * Alerts are for notifying old versions if they become too obsolete and
 * need to upgrade. The message is displayed in the status bar.
 * @see GetWarnings()
 */
class CAlert
{

To describe a member or variable use:

int var; //!< Detailed description after the member

Also OK:

///
/// ... text ...
///
bool function2(int arg1, const char *arg2)

Not OK (used plenty in the current source, but not picked up):

//
// ... text ...
//

A full list of comment syntaxes picked up by doxygen can be found at http://www.stack.nl/~dimitri/doxygen/manual/docblocks.html,
but if possible use one of the above styles.

Development tips and tricks

compiling for debugging

Run configure with the –enable-debug option, then make. Or run configure with
CXXFLAGS=”-g -ggdb -O0” or whatever debug flags you need.

debug.log

If the code is behaving strangely, take a look in the debug.log file in the data directory;
error and debugging messages are written there.

The -debug=... command-line option controls debugging; running with just -debug or -debug=1 will turn
on all categories (and give you a very large debug.log file).

testnet and regtest modes

Run with the -testnet option to run with “play zcash” on the test network, if you
are testing multi-machine code that needs to operate across the internet.

If you are testing something that can run on one machine, run with the -regtest option.
In regression test mode, blocks can be created on-demand; see qa/rpc-tests/ for tests
that run in -regtest mode.

DEBUG_LOCKORDER

Zcash is a multithreaded application, and deadlocks or other multithreading bugs
can be very difficult to track down. Compiling with -DDEBUG_LOCKORDER (configure
CXXFLAGS=”-DDEBUG_LOCKORDER -g”) inserts run-time checks to keep track of which locks
are held, and adds warnings to the debug.log file if inconsistencies are detected.

Locking/mutex usage notes

The code is multi-threaded, and uses mutexes and the
LOCK/TRY_LOCK macros to protect data structures.

Deadlocks due to inconsistent lock ordering (thread 1 locks cs_main
and then cs_wallet, while thread 2 locks them in the opposite order:
result, deadlock as each waits for the other to release its lock) are
a problem. Compile with -DDEBUG_LOCKORDER to get lock order
inconsistencies reported in the debug.log file.

Re-architecting the core code so there are better-defined interfaces
between the various components is a goal, with any necessary locking
done by the components (e.g. see the self-contained CKeyStore class
and its cs_KeyStore lock for example).

Threads

	ThreadScriptCheck : Verifies block scripts.

	ThreadImport : Loads blocks from blk*.dat files or bootstrap.dat.

	StartNode : Starts other threads.

	ThreadDNSAddressSeed : Loads addresses of peers from the DNS.

	ThreadMapPort : Universal plug-and-play startup/shutdown

	ThreadSocketHandler : Sends/Receives data from peers on port 8233.

	ThreadOpenAddedConnections : Opens network connections to added nodes.

	ThreadOpenConnections : Initiates new connections to peers.

	ThreadMessageHandler : Higher-level message handling (sending and receiving).

	DumpAddresses : Dumps IP addresses of nodes to peers.dat.

	ThreadFlushWalletDB : Close the wallet.dat file if it hasn’t been used in 500ms.

	ThreadRPCServer : Remote procedure call handler, listens on port 8232 for connections and services them.

	ZcashMiner : Generates zcash (if wallet is enabled).

	Shutdown : Does an orderly shutdown of everything.

Pull Request Terminology

Concept ACK - Agree with the idea and overall direction, but have neither reviewed nor tested the code changes.

utACK (untested ACK) - Reviewed and agree with the code changes but haven’t actually tested them.

Tested ACK - Reviewed the code changes and have verified the functionality or bug fix.

ACK - A loose ACK can be confusing. It’s best to avoid them unless it’s a documentation/comment only change in which case there is nothing to test/verify; therefore the tested/untested distinction is not there.

NACK - Disagree with the code changes/concept. Should be accompanied by an explanation.

 TOR SUPPORT IN ZCASH

 *** Warning: Do not assume Tor support does the correct thing in Zcash; better Tor support is a future feature goal. ***

TOR SUPPORT IN ZCASH

It is possible to run Zcash as a Tor hidden service, and connect to such services.

The following directions assume you have a Tor proxy running on port 9050. Many distributions default to having a SOCKS proxy listening on port 9050, but others may not. In particular, the Tor Browser Bundle defaults to listening on port 9150. See Tor Project FAQ:TBBSocksPort [https://www.torproject.org/docs/faq.html.en#TBBSocksPort] for how to properly
configure Tor.

	Run Zcash behind a Tor proxy

The first step is running Zcash behind a Tor proxy. This will already make all
outgoing connections be anonymized, but more is possible.

-proxy=ip:port Set the proxy server. If SOCKS5 is selected (default), this proxy
 server will be used to try to reach .onion addresses as well.

-onion=ip:port Set the proxy server to use for Tor hidden services. You do not
 need to set this if it's the same as -proxy. You can use -noonion
 to explicitly disable access to hidden service.

-listen When using -proxy, listening is disabled by default. If you want
 to run a hidden service (see next section), you'll need to enable
 it explicitly.

-connect=X When behind a Tor proxy, you can specify .onion addresses instead
-addnode=X of IP addresses or hostnames in these parameters. It requires
-seednode=X SOCKS5. In Tor mode, such addresses can also be exchanged with
 other P2P nodes.

In a typical situation, this suffices to run behind a Tor proxy:

./zcashd -proxy=127.0.0.1:9050

	Run a Zcash hidden server

If you configure your Tor system accordingly, it is possible to make your node also
reachable from the Tor network. Add these lines to your /etc/tor/torrc (or equivalent
config file):

HiddenServiceDir /var/lib/tor/zcash-service/
HiddenServicePort 8233 127.0.0.1:8233
HiddenServicePort 18233 127.0.0.1:18233

The directory can be different of course, but (both) port numbers should be equal to
your zcashd’s P2P listen port (8233 by default).

-externalip=X You can tell Zcash about its publicly reachable address using
 this option, and this can be a .onion address. Given the above
 configuration, you can find your onion address in
 /var/lib/tor/zcash-service/hostname. Onion addresses are given
 preference for your node to advertize itself with, for connections
 coming from unroutable addresses (such as 127.0.0.1, where the
 Tor proxy typically runs).

-listen You'll need to enable listening for incoming connections, as this
 is off by default behind a proxy.

-discover When -externalip is specified, no attempt is made to discover local
 IPv4 or IPv6 addresses. If you want to run a dual stack, reachable
 from both Tor and IPv4 (or IPv6), you'll need to either pass your
 other addresses using -externalip, or explicitly enable -discover.
 Note that both addresses of a dual-stack system may be easily
 linkable using traffic analysis.

In a typical situation, where you’re only reachable via Tor, this should suffice:

./zcashd -proxy=127.0.0.1:9050 -externalip=zctestseie6wxgio.onion -listen

(obviously, replace the Onion address with your own). It should be noted that you still
listen on all devices and another node could establish a clearnet connection, when knowing
your address. To mitigate this, additionally bind the address of your Tor proxy:

./bitcoind ... -bind=127.0.0.1

If you don’t care too much about hiding your node, and want to be reachable on IPv4
as well, use discover instead:

./zcashd ... -discover

and open port 8233 on your firewall (or use -upnp).

If you only want to use Tor to reach onion addresses, but not use it as a proxy
for normal IPv4/IPv6 communication, use:

./zcashd -onion=127.0.0.1:9050 -externalip=zctestseie6wxgio.onion -discover

	Automatically listen on Tor

Starting with Tor version 0.2.7.1 it is possible, through Tor’s control socket
API, to create and destroy ‘ephemeral’ hidden services programmatically.
Zcash has been updated to make use of this.

This means that if Tor is running (and proper authentication has been configured),
Zcash automatically creates a hidden service to listen on. Zcash will also use Tor
automatically to connect to other .onion nodes if the control socket can be
successfully opened. This will positively affect the number of available .onion
nodes and their usage.

This new feature is enabled by default if Zcash is listening (-listen), and
requires a Tor connection to work. It can be explicitly disabled with -listenonion=0
and, if not disabled, configured using the -torcontrol and -torpassword settings.
To show verbose debugging information, pass -debug=tor.

Connecting to Tor’s control socket API requires one of two authentication methods to be
configured. For cookie authentication the user running zcashd must have write access
to the CookieAuthFile specified in Tor configuration. In some cases this is
preconfigured and the creation of a hidden service is automatic. If permission problems
are seen with -debug=tor they can be resolved by adding both the user running tor and
the user running zcashd to the same group and setting permissions appropriately. On
Debian-based systems the user running zcashd can be added to the debian-tor group,
which has the appropriate permissions. An alternative authentication method is the use
of the -torpassword flag and a hash-password which can be enabled and specified in
Tor configuration.

	Connect to a Zcash hidden server

To test your set-up, you might want to try connecting via Tor on a different computer to just a
a single Zcash hidden server. Launch zcashd as follows:

./zcashd -onion=127.0.0.1:9050 -connect=zctestseie6wxgio.onion

Now use zcash-cli to verify there is only a single peer connection.

zcash-cli getpeerinfo

[
 {
 "id" : 1,
 "addr" : "zctestseie6wxgio.onion:18233",
 ...
 "version" : 170002,
 "subver" : "/MagicBean:1.0.0/",
 ...
 }
]

To connect to multiple Tor nodes, use:

./zcashd -onion=127.0.0.1:9050 -addnode=zctestseie6wxgio.onion -dnsseed=0 -onlynet=onion

 <no title>

 Bitcoin version 0.4.1 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.4.1/

This is a bugfix only release based on 0.4.0.

Please report bugs by replying to this forum thread.

MAJOR BUG FIX (CVE-2011-4447)

The wallet encryption feature introduced in Bitcoin version 0.4.0 did not sufficiently secure the private keys. An attacker who
managed to get a copy of your encrypted wallet.dat file might be able to recover some or all of the unencrypted keys and steal the
associated coins.

If you have a previously encrypted wallet.dat, the first time you run wxbitcoin or bitcoind the wallet will be rewritten, Bitcoin will
shut down, and you will be prompted to restart it to run with the new, properly encrypted file.

If you had a previously encrypted wallet.dat that might have been copied or stolen (for example, you backed it up to a public
location) you should send all of your bitcoins to yourself using a new bitcoin address and stop using any previously generated addresses.

Wallets encrypted with this version of Bitcoin are written properly.

Technical note: the encrypted wallet’s ‘keypool’ will be regenerated the first time you request a new bitcoin address; to be certain that the
new private keys are properly backed up you should:

	Run Bitcoin and let it rewrite the wallet.dat file

	Run it again, then ask it for a new bitcoin address.
wxBitcoin: new address visible on main window
bitcoind: run the ‘walletpassphrase’ RPC command to unlock the wallet, then run the ‘getnewaddress’ RPC command.

	If your encrypted wallet.dat may have been copied or stolen, send all of your bitcoins to the new bitcoin address.

	Shut down Bitcoin, then backup the wallet.dat file.
IMPORTANT: be sure to request a new bitcoin address before backing up, so that the ‘keypool’ is regenerated and backed up.

“Security in depth” is always a good idea, so choosing a secure location for the backup and/or encrypting the backup before uploading it is recommended. And as in previous releases, if your machine is infected by malware there are several ways an attacker might steal your bitcoins.

Thanks to Alan Reiner (etotheipi) for finding and reporting this bug.

 Upgrading and downgrading

 Bitcoin Core version 0.10.1 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.10.1/

This is a new minor version release, bringing bug fixes and translation
updates. It is recommended to upgrade to this version.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility.

Notable changes

This is a minor release and hence there are no notable changes.
For the notable changes in 0.10, refer to the release notes for the
0.10.0 release at https://github.com/bitcoin/bitcoin/blob/v0.10.0/doc/release-notes.md

0.10.1 Change log

Detailed release notes follow. This overview includes changes that affect external
behavior, not code moves, refactors or string updates.

RPC:

	7f502be fix crash: createmultisig and addmultisigaddress

	eae305f Fix missing lock in submitblock

Block (database) and transaction handling:

	1d2cdd2 Fix InvalidateBlock to add chainActive.Tip to setBlockIndexCandidates

	c91c660 fix InvalidateBlock to repopulate setBlockIndexCandidates

	002c8a2 fix possible block db breakage during re-index

	a1f425b Add (optional) consistency check for the block chain data structures

	1c62e84 Keep mempool consistent during block-reorgs

	57d1f46 Fix CheckBlockIndex for reindex

	bac6fca Set nSequenceId when a block is fully linked

P2P protocol and network code:

	78f64ef don’t trickle for whitelisted nodes

	ca301bf Reduce fingerprinting through timestamps in ‘addr’ messages.

	200f293 Ignore getaddr messages on Outbound connections.

	d5d8998 Limit message sizes before transfer

	aeb9279 Better fingerprinting protection for non-main-chain getdatas.

	cf0218f Make addrman’s bucket placement deterministic (countermeasure 1 against eclipse attacks, see http://cs-people.bu.edu/heilman/eclipse/)

	0c6f334 Always use a 50% chance to choose between tried and new entries (countermeasure 2 against eclipse attacks)

	214154e Do not bias outgoing connections towards fresh addresses (countermeasure 2 against eclipse attacks)

	aa587d4 Scale up addrman (countermeasure 6 against eclipse attacks)

	139cd81 Cap nAttempts penalty at 8 and switch to pow instead of a division loop

Validation:

	d148f62 Acquire CCheckQueue’s lock to avoid race condition

Build system:

	8752b5c 0.10 fix for crashes on OSX 10.6

Wallet:

	N/A

GUI:

	2c08406 some mac specifiy cleanup (memory handling, unnecessary code)

	81145a6 fix OSX dock icon window reopening

	786cf72 fix a issue where “command line options”-action overwrite “Preference”-action (on OSX)

Tests:

	1117378 add RPC test for InvalidateBlock

Miscellaneous:

	c9e022b Initialization: set Boost path locale in main thread

	23126a0 Sanitize command strings before logging them.

	323de27 Initialization: setup environment before starting Qt tests

	7494e09 Initialization: setup environment before starting tests

	df45564 Initialization: set fallback locale as environment variable

Credits

Thanks to everyone who directly contributed to this release:

	Alex Morcos

	Cory Fields

	dexX7

	fsb4000

	Gavin Andresen

	Gregory Maxwell

	Ivan Pustogarov

	Jonas Schnelli

	Matt Corallo

	mrbandrews

	Pieter Wuille

	Ruben de Vries

	Suhas Daftuar

	Wladimir J. van der Laan

And all those who contributed additional code review and/or security research:

	21E14

	Alison Kendler

	Aviv Zohar

	Ethan Heilman

	Evil-Knievel

	fanquake

	Jeff Garzik

	Jonas Nick

	Luke Dashjr

	Patrick Strateman

	Philip Kaufmann

	Sergio Demian Lerner

	Sharon Goldberg

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Bitcoin version 0.5.4 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.4/
NOTE: 0.5.4rc3 is being renamed to 0.5.4 final with no changes.

This is a bugfix-only release in the 0.5.x series, plus a few protocol updates.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.5.4#.tar.gz

PROTOCOL UPDATES

BIP 16: Special-case “pay to script hash” logic to enable minimal validation of new transactions.
Support for validating message signatures produced with compressed public keys.

BUG FIXES

Build with thread-safe MingW libraries for Windows, fixing a dangerous memory corruption scenario when exceptions are thrown.
Fix broken testnet mining.
Stop excess inventory relay during initial block download.
When disconnecting a node, clear the received buffer so that we do not process any already received messages.
Yet another attempt at implementing “minimize to tray” that works on all operating systems.
Fix Bitcoin-Qt notifications under Growl 1.3.
Increase required age of Bitcoin-Qt’s “not up to date” status from 30 to 90 minutes.
Implemented missing verifications that led to crash on entering some wrong passphrases for encrypted wallets.
Fix default filename suffixes in GNOME save dialog.
Make the “Send coins” tab use the configured unit type, even on the first attempt.
Print detailed wallet loading errors to debug.log when it is corrupt.
Allocate exactly the amount of space needed for signing transactions, instead of a fixed 10k buffer.
Workaround for improbable memory access violation.
Check wallet’s minimum version before trying to load it.
Remove wxBitcoin properly when installing Bitcoin-Qt over it. (Windows)
Detail reorganization information better in debug log.
Use a messagebox to display the error when -server is provided without configuring a RPC password.
Testing suite build now honours provided CXXFLAGS.
Removed an extraneous line-break in mature transaction tooltips.
Fix some grammatical errors in translation process documentation.

 <no title>

 Binaries for Bitcoin version 0.3.21 are available at:
https://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.21/

Changes and new features from the 0.3.20 release include:

	Universal Plug and Play support. Enable automatic opening of a port for incoming connections by running bitcoin or bitcoind with the - -upnp=1 command line switch or using the Options dialog box.

	Support for full-precision bitcoin amounts. You can now send, and bitcoin will display, bitcoin amounts smaller than 0.01. However, sending fewer than 0.01 bitcoins still requires a 0.01 bitcoin fee (so you can send 1.0001 bitcoins without a fee, but you will be asked to pay a fee if you try to send 0.0001).

	A new method of finding bitcoin nodes to connect with, via DNS A records. Use the -dnsseed option to enable.

For developers, changes to bitcoin’s remote-procedure-call API:

	New rpc command “sendmany” to send bitcoins to more than one address in a single transaction.

	Several bug fixes, including a serious intermittent bug that would sometimes cause bitcoind to stop accepting rpc requests.

	-logtimestamps option, to add a timestamp to each line in debug.log.

	Immature blocks (newly generated, under 120 confirmations) are now shown in listtransactions.

 How to Upgrade

 Bitcoin Core version 0.9.5 is now available from:

https://bitcoin.org/bin/0.9.5/

This is a new minor version release, with the goal of backporting BIP66. There
are also a few bug fixes and updated translations. Upgrading to this release is
recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Notable changes

Mining and relay policy enhancements

Bitcoin Core’s block templates are now for version 3 blocks only, and any mining
software relying on its getblocktemplate must be updated in parallel to use
libblkmaker either version 0.4.2 or any version from 0.5.1 onward.
If you are solo mining, this will affect you the moment you upgrade Bitcoin
Core, which must be done prior to BIP66 achieving its 951/1001 status.
If you are mining with the stratum mining protocol: this does not affect you.
If you are mining with the getblocktemplate protocol to a pool: this will affect
you at the pool operator’s discretion, which must be no later than BIP66
achieving its 951/1001 status.

0.9.5 changelog

	74f29c2 Check pindexBestForkBase for null

	9cd1dd9 Fix priority calculation in CreateTransaction

	6b4163b Sanitize command strings before logging them.

	3230b32 Raise version of created blocks, and enforce DERSIG in mempool

	989d499 Backport of some of BIP66’s tests

	ab03660 Implement BIP 66 validation rules and switchover logic

	8438074 build: fix dynamic boost check when –with-boost= is used

Credits

Thanks to who contributed to this release, at least:

	21E14

	Alex Morcos

	Cory Fields

	Gregory Maxwell

	Pieter Wuille

	Wladimir J. van der Laan

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Never released or release notes were lost.

 Upgrading and downgrading

 Bitcoin Core version 0.10.3 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.10.3/

This is a new minor version release, bringing security fixes and translation
updates. It is recommended to upgrade to this version as soon as possible.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility.

Notable changes

Fix buffer overflow in bundled upnp

Bundled miniupnpc was updated to 1.9.20151008. This fixes a buffer overflow in
the XML parser during initial network discovery.

Details can be found here: http://talosintel.com/reports/TALOS-2015-0035/

This applies to the distributed executables only, not when building from source or
using distribution provided packages.

Additionally, upnp has been disabled by default. This may result in a lower
number of reachable nodes on IPv4, however this prevents future libupnpc
vulnerabilities from being a structural risk to the network
(see https://github.com/bitcoin/bitcoin/pull/6795).

Test for LowS signatures before relaying

Make the node require the canonical ‘low-s’ encoding for ECDSA signatures when
relaying or mining. This removes a nuisance malleability vector.

Consensus behavior is unchanged.

If widely deployed this change would eliminate the last remaining known vector
for nuisance malleability on SIGHASH_ALL P2PKH transactions. On the down-side
it will block most transactions made by sufficiently out of date software.

Unlike the other avenues to change txids on transactions this
one was randomly violated by all deployed bitcoin software prior to
its discovery. So, while other malleability vectors where made
non-standard as soon as they were discovered, this one has remained
permitted. Even BIP62 did not propose applying this rule to
old version transactions, but conforming implementations have become
much more common since BIP62 was initially written.

Bitcoin Core has produced compatible signatures since a28fb70e in
September 2013, but this didn’t make it into a release until 0.9
in March 2014; Bitcoinj has done so for a similar span of time.
Bitcoinjs and electrum have been more recently updated.

This does not replace the need for BIP62 or similar, as miners can
still cooperate to break transactions. Nor does it replace the
need for wallet software to handle malleability sanely[1]. This
only eliminates the cheap and irritating DOS attack.

[1] On the Malleability of Bitcoin Transactions
Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, Łukasz Mazurek
http://fc15.ifca.ai/preproceedings/bitcoin/paper_9.pdf

Minimum relay fee default increase

The default for the -minrelaytxfee setting has been increased from 0.00001
to 0.00005.

This is necessitated by the current transaction flooding, causing
outrageous memory usage on nodes due to the mempool ballooning. This is a
temporary measure, bridging the time until a dynamic method for determining
this fee is merged (which will be in 0.12).

(see https://github.com/bitcoin/bitcoin/pull/6793, as well as the 0.11.0
release notes, in which this value was suggested)

0.10.3 Change log

Detailed release notes follow. This overview includes changes that affect external
behavior, not code moves, refactors or string updates.

	#6186 e4a7d51 Fix two problems in CSubnet parsing

	#6153 ebd7d8d Parameter interaction: disable upnp if -proxy set

	#6203 ecc96f5 Remove P2SH coinbase flag, no longer interesting

	#6226 181771b json: fail read_string if string contains trailing garbage

	#6244 09334e0 configure: Detect (and reject) LibreSSL

	#6276 0fd8464 Fix getbalance * 0

	#6274 be64204 Add option -alerts to opt out of alert system

	#6319 3f55638 doc: update mailing list address

	#6438 7e66e9c openssl: avoid config file load/race

	#6439 255eced Updated URL location of netinstall for Debian

	#6412 0739e6e Test whether created sockets are select()able

	#6694 f696ea1 [QT] fix thin space word wrap line brake issue

	#6704 743cc9e Backport bugfixes to 0.10

	#6769 1cea6b0 Test LowS in standardness, removes nuisance malleability vector.

	#6789 093d7b5 Update miniupnpc to 1.9.20151008

	#6795 f2778e0 net: Disable upnp by default

	#6797 91ef4d9 Do not store more than 200 timedata samples

	#6793 842c48d Bump minrelaytxfee default

Credits

Thanks to everyone who directly contributed to this release:

	Adam Weiss

	Alex Morcos

	Casey Rodarmor

	Cory Fields

	fanquake

	Gregory Maxwell

	Jonas Schnelli

	J Ross Nicoll

	Luke Dashjr

	Pavel Vasin

	Pieter Wuille

	randy-waterhouse

	฿tcDrak

	Tom Harding

	Veres Lajos

	Wladimir J. van der Laan

And all those who contributed additional code review and/or security research:

	timothy on IRC for reporting the issue

	Vulnerability in miniupnp discovered by Aleksandar Nikolic of Cisco Talos

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Bitcoin version 0.5.2 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.2/

This is a bugfix-only release based on 0.5.1.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.5.2#.tar.gz

BUG FIXES

Check all transactions in blocks after the last checkpoint (0.5.0 and 0.5.1 skipped checking ECDSA signatures during initial blockchain download).
Cease locking memory used by non-sensitive information (this caused a huge performance hit on some platforms, especially noticable during initial blockchain download; this was
not a security vulnerability).
Fixed some address-handling deadlocks (client freezes).
No longer accept inbound connections over the internet when Bitcoin is being used with Tor (identity leak).
Re-enable SSL support for the JSON-RPC interface (it was unintentionally disabled for the 0.5.0 and 0.5.1 release Linux binaries).
Use the correct base transaction fee of 0.0005 BTC for accepting transactions into mined blocks (since 0.4.0, it was incorrectly accepting 0.0001 BTC which was only meant to be relayed).
Don’t show “IP” for transactions which are not necessarily IP transactions.
Add new DNS seeds (maintained by Pieter Wuille and Luke Dashjr).

 <no title>

 Never released.

 <no title>

 bitcoind version 0.4.3 is now available for download at:
http://luke.dashjr.org/programs/bitcoin/files/bitcoind-0.4.3/ (until Gavin uploads to SourceForge)

This is a bugfix-only release based on 0.4.0.

Please note that the wxBitcoin GUI client is no longer maintained nor supported. If someone would like to step up to maintain this, they should contact Luke-Jr.

Please report bugs for the daemon only using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.4.3#.tar.gz

BUG FIXES

Cease locking memory used by non-sensitive information (this caused a huge performance hit on some platforms, especially noticable during initial blockchain download).
Fixed some address-handling deadlocks (client freezes).
No longer accept inbound connections over the internet when Bitcoin is being used with Tor (identity leak).
Use the correct base transaction fee of 0.0005 BTC for accepting transactions into mined blocks (since 0.4.0, it was incorrectly accepting 0.0001 BTC which was only meant to be relayed).
Add new DNS seeds (maintained by Pieter Wuille and Luke Dashjr).

 Upgrading and downgrading

 Bitcoin Core version 0.10.0 is now available from:

https://bitcoin.org/bin/0.10.0/

This is a new major version release, bringing both new features and
bug fixes.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrading warning

Because release 0.10.0 makes use of headers-first synchronization and parallel
block download (see further), the block files and databases are not
backwards-compatible with older versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility.

Notable changes

Faster synchronization

Bitcoin Core now uses ‘headers-first synchronization’. This means that we first
ask peers for block headers (a total of 27 megabytes, as of December 2014) and
validate those. In a second stage, when the headers have been discovered, we
download the blocks. However, as we already know about the whole chain in
advance, the blocks can be downloaded in parallel from all available peers.

In practice, this means a much faster and more robust synchronization. On
recent hardware with a decent network link, it can be as little as 3 hours
for an initial full synchronization. You may notice a slower progress in the
very first few minutes, when headers are still being fetched and verified, but
it should gain speed afterwards.

A few RPCs were added/updated as a result of this:

	getblockchaininfo now returns the number of validated headers in addition to
the number of validated blocks.

	getpeerinfo lists both the number of blocks and headers we know we have in
common with each peer. While synchronizing, the heights of the blocks that we
have requested from peers (but haven’t received yet) are also listed as
‘inflight’.

	A new RPC getchaintips lists all known branches of the block chain,
including those we only have headers for.

Transaction fee changes

This release automatically estimates how high a transaction fee (or how
high a priority) transactions require to be confirmed quickly. The default
settings will create transactions that confirm quickly; see the new
‘txconfirmtarget’ setting to control the tradeoff between fees and
confirmation times. Fees are added by default unless the ‘sendfreetransactions’
setting is enabled.

Prior releases used hard-coded fees (and priorities), and would
sometimes create transactions that took a very long time to confirm.

Statistics used to estimate fees and priorities are saved in the
data directory in the fee_estimates.dat file just before
program shutdown, and are read in at startup.

New command line options for transaction fee changes:

	-txconfirmtarget=n : create transactions that have enough fees (or priority)
so they are likely to begin confirmation within n blocks (default: 1). This setting
is over-ridden by the -paytxfee option.

	-sendfreetransactions : Send transactions as zero-fee transactions if possible
(default: 0)

New RPC commands for fee estimation:

	estimatefee nblocks : Returns approximate fee-per-1,000-bytes needed for
a transaction to begin confirmation within nblocks. Returns -1 if not enough
transactions have been observed to compute a good estimate.

	estimatepriority nblocks : Returns approximate priority needed for
a zero-fee transaction to begin confirmation within nblocks. Returns -1 if not
enough free transactions have been observed to compute a good
estimate.

RPC access control changes

Subnet matching for the purpose of access control is now done
by matching the binary network address, instead of with string wildcard matching.
For the user this means that -rpcallowip takes a subnet specification, which can be

	a single IP address (e.g. 1.2.3.4 or fe80::0012:3456:789a:bcde)

	a network/CIDR (e.g. 1.2.3.0/24 or fe80::0000/64)

	a network/netmask (e.g. 1.2.3.4/255.255.255.0 or fe80::0012:3456:789a:bcde/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff)

An arbitrary number of -rpcallow arguments can be given. An incoming connection will be accepted if its origin address
matches one of them.

For example:

0.9.x and before	0.10.x
——————————————–	—————————————
-rpcallowip=192.168.1.1	-rpcallowip=192.168.1.1 (unchanged)
-rpcallowip=192.168.1.*	-rpcallowip=192.168.1.0/24
-rpcallowip=192.168.*	-rpcallowip=192.168.0.0/16
-rpcallowip=* (dangerous!)	-rpcallowip=::/0 (still dangerous!)

Using wildcards will result in the rule being rejected with the following error in debug.log:

Error: Invalid -rpcallowip subnet specification: *. Valid are a single IP (e.g. 1.2.3.4), a network/netmask (e.g. 1.2.3.4/255.255.255.0) or a network/CIDR (e.g. 1.2.3.4/24).

REST interface

A new HTTP API is exposed when running with the -rest flag, which allows
unauthenticated access to public node data.

It is served on the same port as RPC, but does not need a password, and uses
plain HTTP instead of JSON-RPC.

Assuming a local RPC server running on port 8332, it is possible to request:

	Blocks: http://localhost:8332/rest/block/HASH.EXT

	Blocks without transactions: http://localhost:8332/rest/block/notxdetails/HASH.EXT

	Transactions (requires -txindex): http://localhost:8332/rest/tx/HASH.EXT

In every case, EXT can be bin (for raw binary data), hex (for hex-encoded
binary) or json.

For more details, see the doc/REST-interface.md document in the repository.

RPC Server “Warm-Up” Mode

The RPC server is started earlier now, before most of the expensive
intialisations like loading the block index. It is available now almost
immediately after starting the process. However, until all initialisations
are done, it always returns an immediate error with code -28 to all calls.

This new behaviour can be useful for clients to know that a server is already
started and will be available soon (for instance, so that they do not
have to start it themselves).

Improved signing security

For 0.10 the security of signing against unusual attacks has been
improved by making the signatures constant time and deterministic.

This change is a result of switching signing to use libsecp256k1
instead of OpenSSL. Libsecp256k1 is a cryptographic library
optimized for the curve Bitcoin uses which was created by Bitcoin
Core developer Pieter Wuille.

There exist attacks[1] against most ECC implementations where an
attacker on shared virtual machine hardware could extract a private
key if they could cause a target to sign using the same key hundreds
of times. While using shared hosts and reusing keys are inadvisable
for other reasons, it’s a better practice to avoid the exposure.

OpenSSL has code in their source repository for derandomization
and reduction in timing leaks that we’ve eagerly wanted to use for a
long time, but this functionality has still not made its
way into a released version of OpenSSL. Libsecp256k1 achieves
significantly stronger protection: As far as we’re aware this is
the only deployed implementation of constant time signing for
the curve Bitcoin uses and we have reason to believe that
libsecp256k1 is better tested and more thoroughly reviewed
than the implementation in OpenSSL.

[1] https://eprint.iacr.org/2014/161.pdf

Watch-only wallet support

The wallet can now track transactions to and from wallets for which you know
all addresses (or scripts), even without the private keys.

This can be used to track payments without needing the private keys online on a
possibly vulnerable system. In addition, it can help for (manual) construction
of multisig transactions where you are only one of the signers.

One new RPC, importaddress, is added which functions similarly to
importprivkey, but instead takes an address or script (in hexadecimal) as
argument. After using it, outputs credited to this address or script are
considered to be received, and transactions consuming these outputs will be
considered to be sent.

The following RPCs have optional support for watch-only:
getbalance, listreceivedbyaddress, listreceivedbyaccount,
listtransactions, listaccounts, listsinceblock, gettransaction. See the
RPC documentation for those methods for more information.

Compared to using getrawtransaction, this mechanism does not require
-txindex, scales better, integrates better with the wallet, and is compatible
with future block chain pruning functionality. It does mean that all relevant
addresses need to added to the wallet before the payment, though.

Consensus library

Starting from 0.10.0, the Bitcoin Core distribution includes a consensus library.

The purpose of this library is to make the verification functionality that is
critical to Bitcoin’s consensus available to other applications, e.g. to language
bindings such as python-bitcoinlib [https://pypi.python.org/pypi/python-bitcoinlib] or
alternative node implementations.

This library is called libbitcoinconsensus.so (or, .dll for Windows).
Its interface is defined in the C header bitcoinconsensus.h [https://github.com/bitcoin/bitcoin/blob/0.10/src/script/bitcoinconsensus.h].

In its initial version the API includes two functions:

	bitcoinconsensus_verify_script verifies a script. It returns whether the indicated input of the provided serialized transaction
correctly spends the passed scriptPubKey under additional constraints indicated by flags

	bitcoinconsensus_version returns the API version, currently at an experimental 0

The functionality is planned to be extended to e.g. UTXO management in upcoming releases, but the interface
for existing methods should remain stable.

Standard script rules relaxed for P2SH addresses

The IsStandard() rules have been almost completely removed for P2SH
redemption scripts, allowing applications to make use of any valid
script type, such as “n-of-m OR y”, hash-locked oracle addresses, etc.
While the Bitcoin protocol has always supported these types of script,
actually using them on mainnet has been previously inconvenient as
standard Bitcoin Core nodes wouldn’t relay them to miners, nor would
most miners include them in blocks they mined.

bitcoin-tx

It has been observed that many of the RPC functions offered by bitcoind are
“pure functions”, and operate independently of the bitcoind wallet. This
included many of the RPC “raw transaction” API functions, such as
createrawtransaction.

bitcoin-tx is a newly introduced command line utility designed to enable easy
manipulation of bitcoin transactions. A summary of its operation may be
obtained via “bitcoin-tx –help” Transactions may be created or signed in a
manner similar to the RPC raw tx API. Transactions may be updated, deleting
inputs or outputs, or appending new inputs and outputs. Custom scripts may be
easily composed using a simple text notation, borrowed from the bitcoin test
suite.

This tool may be used for experimenting with new transaction types, signing
multi-party transactions, and many other uses. Long term, the goal is to
deprecate and remove “pure function” RPC API calls, as those do not require a
server round-trip to execute.

Other utilities “bitcoin-key” and “bitcoin-script” have been proposed, making
key and script operations easily accessible via command line.

Mining and relay policy enhancements

Bitcoin Core’s block templates are now for version 3 blocks only, and any mining
software relying on its getblocktemplate must be updated in parallel to use
libblkmaker either version 0.4.2 or any version from 0.5.1 onward.
If you are solo mining, this will affect you the moment you upgrade Bitcoin
Core, which must be done prior to BIP66 achieving its 951/1001 status.
If you are mining with the stratum mining protocol: this does not affect you.
If you are mining with the getblocktemplate protocol to a pool: this will affect
you at the pool operator’s discretion, which must be no later than BIP66
achieving its 951/1001 status.

The prioritisetransaction RPC method has been added to enable miners to
manipulate the priority of transactions on an individual basis.

Bitcoin Core now supports BIP 22 long polling, so mining software can be
notified immediately of new templates rather than having to poll periodically.

Support for BIP 23 block proposals is now available in Bitcoin Core’s
getblocktemplate method. This enables miners to check the basic validity of
their next block before expending work on it, reducing risks of accidental
hardforks or mining invalid blocks.

Two new options to control mining policy:

	-datacarrier=0/1 : Relay and mine “data carrier” (OP_RETURN) transactions
if this is 1.

	-datacarriersize=n : Maximum size, in bytes, we consider acceptable for
“data carrier” outputs.

The relay policy has changed to more properly implement the desired behavior of not
relaying free (or very low fee) transactions unless they have a priority above the
AllowFreeThreshold(), in which case they are relayed subject to the rate limiter.

BIP 66: strict DER encoding for signatures

Bitcoin Core 0.10 implements BIP 66, which introduces block version 3, and a new
consensus rule, which prohibits non-DER signatures. Such transactions have been
non-standard since Bitcoin v0.8.0 (released in February 2013), but were
technically still permitted inside blocks.

This change breaks the dependency on OpenSSL’s signature parsing, and is
required if implementations would want to remove all of OpenSSL from the
consensus code.

The same miner-voting mechanism as in BIP 34 is used: when 751 out of a
sequence of 1001 blocks have version number 3 or higher, the new consensus
rule becomes active for those blocks. When 951 out of a sequence of 1001
blocks have version number 3 or higher, it becomes mandatory for all blocks.

Backward compatibility with current mining software is NOT provided, thus miners
should read the first paragraph of “Mining and relay policy enhancements” above.

0.10.0 Change log

Detailed release notes follow. This overview includes changes that affect external
behavior, not code moves, refactors or string updates.

RPC:

	f923c07 Support IPv6 lookup in bitcoin-cli even when IPv6 only bound on localhost

	b641c9c Fix addnode “onetry”: Connect with OpenNetworkConnection

	171ca77 estimatefee / estimatepriority RPC methods

	b750cf1 Remove cli functionality from bitcoind

	f6984e8 Add “chain” to getmininginfo, improve help in getblockchaininfo

	99ddc6c Add nLocalServices info to RPC getinfo

	cf0c47b Remove getwork() RPC call

	2a72d45 prioritisetransaction

 <no title>

 Bitcoin version 0.4.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.4.0/

The main feature in this release is wallet private key encryption;
you can set a passphrase that must be entered before sending coins.
See below for more information; if you decide to encrypt your wallet,
WRITE DOWN YOUR PASSPHRASE AND PUT IT IN A SECURE LOCATION. If you
forget or lose your wallet passphrase, you lose your bitcoins.
Previous versions of bitcoin are unable to read encrypted wallets,
and will crash on startup if the wallet is encrypted.

Also note: bitcoin version 0.4 uses a newer version of Berkeley DB
(bdb version 4.8) than previous versions (bdb 4.7). If you upgrade
to version 0.4 and then revert back to an earlier version of bitcoin
the it may be unable to start because bdb 4.7 cannot read bdb 4.8
“log” files.

Notable bug fixes from version 0.3.24:

Fix several bitcoin-becomes-unresponsive bugs due to multithreading
deadlocks.

Optimize database writes for large (lots of inputs) transactions
(fixes a potential denial-of-service attack)

Wallet Encryption

Bitcoin supports native wallet encryption so that people who steal your
wallet file don’t automatically get access to all of your Bitcoins.
In order to enable this feature, choose “Encrypt Wallet” from the
Options menu. You will be prompted to enter a passphrase, which
will be used as the key to encrypt your wallet and will be needed
every time you wish to send Bitcoins. If you lose this passphrase,
you will lose access to spend all of the bitcoins in your wallet,
no one, not even the Bitcoin developers can recover your Bitcoins.
This means you are responsible for your own security, store your
passphrase in a secure location and do not forget it.

Remember that the encryption built into bitcoin only encrypts the
actual keys which are required to send your bitcoins, not the full
wallet. This means that someone who steals your wallet file will
be able to see all the addresses which belong to you, as well as the
relevant transactions, you are only protected from someone spending
your coins.

It is recommended that you backup your wallet file before you
encrypt your wallet. To do this, close the Bitcoin client and
copy the wallet.dat file from ~/.bitcoin/ on Linux, /Users/(user
name)/Application Support/Bitcoin/ on Mac OSX, and %APPDATA%/Bitcoin/
on Windows (that is /Users/(user name)/AppData/Roaming/Bitcoin on
Windows Vista and 7 and /Documents and Settings/(user name)/Application
Data/Bitcoin on Windows XP). Once you have copied that file to a
safe location, reopen the Bitcoin client and Encrypt your wallet.
If everything goes fine, delete the backup and enjoy your encrypted
wallet. Note that once you encrypt your wallet, you will never be
able to go back to a version of the Bitcoin client older than 0.4.

Keep in mind that you are always responsible for your own security.
All it takes is a slightly more advanced wallet-stealing trojan which
installs a keylogger to steal your wallet passphrase as you enter it
in addition to your wallet file and you have lost all your Bitcoins.
Wallet encryption cannot keep you safe if you do not practice
good security, such as running up-to-date antivirus software, only
entering your wallet passphrase in the Bitcoin client and using the
same passphrase only as your wallet passphrase.

See the doc/README file in the bitcoin source for technical details
of wallet encryption.

 Upgrading and downgrading

 Bitcoin Core version 0.11.1 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.11.1/

This is a new minor version release, bringing security fixes. It is recommended
to upgrade to this version as soon as possible.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility. There are no
known problems when downgrading from 0.11.x to 0.10.x.

Notable changes

Fix buffer overflow in bundled upnp

Bundled miniupnpc was updated to 1.9.20151008. This fixes a buffer overflow in
the XML parser during initial network discovery.

Details can be found here: http://talosintel.com/reports/TALOS-2015-0035/

This applies to the distributed executables only, not when building from source or
using distribution provided packages.

Additionally, upnp has been disabled by default. This may result in a lower
number of reachable nodes on IPv4, however this prevents future libupnpc
vulnerabilities from being a structural risk to the network
(see https://github.com/bitcoin/bitcoin/pull/6795).

Test for LowS signatures before relaying

Make the node require the canonical ‘low-s’ encoding for ECDSA signatures when
relaying or mining. This removes a nuisance malleability vector.

Consensus behavior is unchanged.

If widely deployed this change would eliminate the last remaining known vector
for nuisance malleability on SIGHASH_ALL P2PKH transactions. On the down-side
it will block most transactions made by sufficiently out of date software.

Unlike the other avenues to change txids on transactions this
one was randomly violated by all deployed bitcoin software prior to
its discovery. So, while other malleability vectors where made
non-standard as soon as they were discovered, this one has remained
permitted. Even BIP62 did not propose applying this rule to
old version transactions, but conforming implementations have become
much more common since BIP62 was initially written.

Bitcoin Core has produced compatible signatures since a28fb70e in
September 2013, but this didn’t make it into a release until 0.9
in March 2014; Bitcoinj has done so for a similar span of time.
Bitcoinjs and electrum have been more recently updated.

This does not replace the need for BIP62 or similar, as miners can
still cooperate to break transactions. Nor does it replace the
need for wallet software to handle malleability sanely[1]. This
only eliminates the cheap and irritating DOS attack.

[1] On the Malleability of Bitcoin Transactions
Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, Łukasz Mazurek
http://fc15.ifca.ai/preproceedings/bitcoin/paper_9.pdf

Minimum relay fee default increase

The default for the -minrelaytxfee setting has been increased from 0.00001
to 0.00005.

This is necessitated by the current transaction flooding, causing
outrageous memory usage on nodes due to the mempool ballooning. This is a
temporary measure, bridging the time until a dynamic method for determining
this fee is merged (which will be in 0.12).

(see https://github.com/bitcoin/bitcoin/pull/6793, as well as the 0.11
release notes, in which this value was suggested)

0.11.1 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

	#6438 2531438 openssl: avoid config file load/race

	#6439 980f820 Updated URL location of netinstall for Debian

	#6384 8e5a969 qt: Force TLS1.0+ for SSL connections

	#6471 92401c2 Depends: bump to qt 5.5

	#6224 93b606a Be even stricter in processing unrequested blocks

	#6571 100ac4e libbitcoinconsensus: avoid a crash in multi-threaded environments

	#6545 649f5d9 Do not store more than 200 timedata samples.

	#6694 834e299 [QT] fix thin space word wrap line break issue

	#6703 1cd7952 Backport bugfixes to 0.11

	#6750 5ed8d0b Recent rejects backport to v0.11

	#6769 71cc9d9 Test LowS in standardness, removes nuisance malleability vector.

	#6789 b4ad73f Update miniupnpc to 1.9.20151008

	#6785 b4dc33e Backport to v0.11: In (strCommand == “tx”), return if AlreadyHave()

	#6412 0095b9a Test whether created sockets are select()able

	#6795 4dbcec0 net: Disable upnp by default

	#6793 e7bcc4a Bump minrelaytxfee default

Credits

Thanks to everyone who directly contributed to this release:

	Adam Weiss

	Alex Morcos

	Casey Rodarmor

	Cory Fields

	fanquake

	Gregory Maxwell

	Jonas Schnelli

	J Ross Nicoll

	Luke Dashjr

	Pavel Janík

	Pavel Vasin

	Peter Todd

	Pieter Wuille

	randy-waterhouse

	Ross Nicoll

	Suhas Daftuar

	tailsjoin

	฿tcDrak

	Tom Harding

	Veres Lajos

	Wladimir J. van der Laan

And those who contributed additional code review and/or security research:

	timothy on IRC for reporting the issue

	Vulnerability in miniupnp discovered by Aleksandar Nikolic of Cisco Talos

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Bitcoin version 0.6.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.0/test/

This release includes more than 20 language localizations.
More translations are welcome; join the
project at Transifex to help:
https://www.transifex.net/projects/p/bitcoin/

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; we are no longer
distributing .tar.gz files here, you can get them
directly from github:
https://github.com/bitcoin/bitcoin/tarball/v0.6.0 # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.6.0 # .zip

For Ubuntu users, there is a ppa maintained by Matt Corallo which
you can add to your system so that it will automatically keep
bitcoin up-to-date. Just type
sudo apt-add-repository ppa:bitcoin/bitcoin
in your terminal, then install the bitcoin-qt package.

KNOWN ISSUES

Shutting down while synchronizing with the network
(downloading the blockchain) can take more than a minute,
because database writes are queued to speed up download
time.

NEW FEATURES SINCE BITCOIN VERSION 0.5

Initial network synchronization should be much faster
(one or two hours on a typical machine instead of ten or more
hours).

Backup Wallet menu option.

Bitcoin-Qt can display and save QR codes for sending
and receiving addresses.

New context menu on addresses to copy/edit/delete them.

New Sign Message dialog that allows you to prove that you
own a bitcoin address by creating a digital
signature.

New wallets created with this version will
use 33-byte ‘compressed’ public keys instead of
65-byte public keys, resulting in smaller
transactions and less traffic on the bitcoin
network. The shorter keys are already supported
by the network but wallet.dat files containing
short keys are not compatible with earlier
versions of Bitcoin-Qt/bitcoind.

New command-line argument -blocknotify=
that will spawn a shell process to run
when a new block is accepted.

 How to Upgrade

 Bitcoin Core version 0.9.2.1 is now available from:

https://bitcoin.org/bin/0.9.2.1/

This is a new minor version release, bringing mostly bug fixes and some minor
improvements. OpenSSL has been updated because of a security issue (CVE-2014-0224).
Upgrading to this release is recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.2.1 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9.x and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).

Important changes

Gitian OSX build

The deterministic build system that was already used for Windows and Linux
builds is now used for OSX as well. Although the resulting executables have
been tested quite a bit, there could be possible regressions. Be sure to report
these on the Github bug tracker mentioned above.

Compatibility of Linux build

For Linux we now build against Qt 4.6, and filter the symbols for libstdc++ and glibc.
This brings back compatibility with

	Debian 6+ / Tails

	Ubuntu 10.04

	CentOS 6.5

0.9.2 - 0.9.2.1 Release notes

The OpenSSL dependency in the gitian builds has been upgraded to 1.0.1h because of CVE-2014-0224.

RPC:

	Add getwalletinfo, getblockchaininfo and getnetworkinfo calls (will replace hodge-podge getinfo at some point)

	Add a relayfee field to getnetworkinfo

	Fix RPC related shutdown hangs and leaks

	Always show syncnode in getpeerinfo

	sendrawtransaction: report the reject code and reason, and make it possible to re-send transactions that are already in the mempool

	getmininginfo show right genproclimit

Command-line options:

	Fix -printblocktree output

	Show error message if ReadConfigFile fails

Block-chain handling and storage:

	Fix for GetBlockValue() after block 13,440,000 (BIP42)

	Upgrade leveldb to 1.17

Protocol and network code:

	Per-peer block download tracking and stalled download detection

	Add new DNS seed from bitnodes.io

	Prevent socket leak in ThreadSocketHandler and correct some proxy related socket leaks

	Use pnode->nLastRecv as sync score (was the wrong way around)

Wallet:

	Make GetAvailableCredit run GetHash() only once per transaction (performance improvement)

	Lower paytxfee warning threshold from 0.25 BTC to 0.01 BTC

	Fix importwallet nTimeFirstKey (trigger necessary rescans)

	Log BerkeleyDB version at startup

	CWallet init fix

Build system:

	Add OSX build descriptors to gitian

	Fix explicit –disable-qt-dbus

	Don’t require db_cxx.h when compiling with wallet disabled and GUI enabled

	Improve missing boost error reporting

	Upgrade miniupnpc version to 1.9

	gitian-linux: –enable-glibc-back-compat for binary compatibility with old distributions

	gitian: don’t export any symbols from executable

	gitian: build against Qt 4.6

	devtools: add script to check symbols from Linux gitian executables

	Remove build-time no-IPv6 setting

GUI:

	Fix various coin control visual issues

	Show number of in/out connections in debug console

	Show weeks as well as years behind for long timespans behind

	Enable and disable the Show and Remove buttons for requested payments history based on whether any entry is selected.

	Show also value for options overridden on command line in options dialog

	Fill in label from address book also for URIs

	Fixes feel when resizing the last column on tables (issue #2862)

	Fix ESC in disablewallet mode

	Add expert section to wallet tab in optionsdialog

	Do proper boost::path conversion (fixes unicode in datadir)

	Only override -datadir if different from the default (fixes -datadir in config file)

	Show rescan progress at start-up

	Show importwallet progress

	Get required locks upfront in polling functions (avoids hanging on locks)

	Catch Windows shutdown events while client is running

	Optionally add third party links to transaction context menu

	Check for !pixmap() before trying to export QR code (avoids crashes when no QR code could be generated)

	Fix “Start bitcoin on system login”

Miscellaneous:

	Replace non-threadsafe C functions (gmtime, strerror and setlocale)

	Add missing cs_main and wallet locks

	Avoid exception at startup when system locale not recognized

	Changed bitrpc.py’s raw_input to getpass for passwords to conceal characters during command line input

	devtools: add a script to fetch and postprocess translations

Credits

Thanks to everyone who contributed to this release:

	Addy Yeow

	Altoidnerd

	Andrea D’Amore

	Andreas Schildbach

	Bardi Harborow

	Brandon Dahler

	Bryan Bishop

	Chris Beams

	Christian von Roques

	Cory Fields

	Cozz Lovan

	daniel

	Daniel Newton

	David A. Harding

	ditto-b

	duanemoody

	Eric S. Bullington

	Fabian Raetz

	Gavin Andresen

	Gregory Maxwell

	gubatron

	Haakon Nilsen

	harry

	Hector Jusforgues

	Isidoro Ghezzi

	Jeff Garzik

	Johnathan Corgan

	jtimon

	Kamil Domanski

	langerhans

	Luke Dashjr

	Manuel Araoz

	Mark Friedenbach

	Matt Corallo

	Matthew Bogosian

	Meeh

	Michael Ford

	Michagogo

	Mikael Wikman

	Mike Hearn

	olalonde

	paveljanik

	peryaudo

	Philip Kaufmann

	philsong

	Pieter Wuille

	R E Broadley

	richierichrawr

	Rune K. Svendsen

	rxl

	shshshsh

	Simon de la Rouviere

	Stuart Cardall

	super3

	Telepatheic

	Thomas Zander

	Torstein Husebø

	Warren Togami

	Wladimir J. van der Laan

	Yoichi Hirai

 <no title>

 Bitcoin version 0.7.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.7.0/

We recommend that everybody running prior versions of bitcoind/Bitcoin-Qt
upgrade to this release, except for users running Mac OSX 10.5.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; you can get
source-only tarballs/zipballs directly from there:
https://github.com/bitcoin/bitcoin/tarball/v0.7.0 # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.7.0 # .zip

Ubuntu Linux users can use the “Personal Package Archive” (PPA)
maintained by Matt Corallo to automatically keep
bitcoin up-to-date. Just type
sudo apt-add-repository ppa:bitcoin/bitcoin
sudo apt-get update
in your terminal, then install the bitcoin-qt package:
sudo apt-get install bitcoin-qt

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
Code:
/Applications/Bitcoin-Qt
(on Mac) or
Code:
bitcoind/bitcoin-qt
(on Linux).

If you were running on Linux with a version that might have been compiled
with a different version of Berkeley DB (for example, if you were using the
PPA and are switching to the binary release), then run the old version again
with the -detachdb argument and shut it down; if you do not, then the new
version will not be able to read the database files and will exit with an error.

Incompatible Changes

	Replaced the ‘getmemorypool’ RPC command with ‘getblocktemplate/submitblock’
and ‘getrawmempool’ commands.

	Remove deprecated RPC ‘getblocknumber’

Bitcoin Improvement Proposals implemented

BIP 22 - ‘getblocktemplate’, ‘submitblock’ RPCs
BIP 34 - block version 2, height in coinbase
BIP 35 - ‘mempool’ message, extended ‘getdata’ message behavior

Core bitcoin handling and blockchain database

	Reduced CPU usage, by eliminating some redundant hash calculations

	Cache signature verifications, to eliminate redundant signature checks

	Transactions with zero-value outputs are considered non-standard

	Mining: when creating new blocks, sort ‘paid’ area by fee-per-kb

	Database: better validation of on-disk stored data

	Database: minor optimizations and reliability improvements

	-loadblock=FILE will import an external block file

	Additional DoS (denial-of-service) prevention measures

	New blockchain checkpoint at block 193,000

JSON-RPC API

	Internal HTTP server is now thread-per-connection, rather than
a single-threaded queue that would stall on network I/O.

	Internal HTTP server supports HTTP/1.1, pipelined requests and
connection keep-alive.

	Support JSON-RPC 2.0 batches, to encapsulate multiple JSON-RPC requests
within a single HTTP request.

	IPv6 support

	Added raw transaction API. See https://gist.github.com/2839617

	Added ‘getrawmempool’, to list contents of TX memory pool

	Added ‘getpeerinfo’, to list data about each connected network peer

	Added ‘listaddressgroupings’ for better coin control

	Rework getblock call.

	Remove deprecated RPC ‘getblocknumber’

	Remove superceded RPC ‘getmemorypool’ (see BIP 22, above)

	listtransactions output now displays “smart” times for transactions,
and ‘blocktime’ and ‘timereceived’ fields were added

P2P networking

	IPv6 support

	Tor hidden service support (see doc/Tor.txt)

	Attempts to fix “stuck blockchain download” problems

	Replace BDB database “addr.dat” with internally-managed “peers.dat”
file containing peer address data.

	Lower default send buffer from 10MB to 1MB

	proxy: SOCKS5 by default

	Support connecting by hostnames passed to proxy

	Add -seednode connections, and use this instead of DNS seeds when proxied

	Added -externalip and -discover

	Add -onlynet to connect only to a given network (IPv4, IPv6, or Tor)

	Separate listening sockets, -bind=

 <no title>

 Never released or release notes were lost.

 Upgrading and downgrading

 Bitcoin Core version 0.11.2 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.11.2/

This is a new minor version release, bringing bug fixes, the BIP65
(CLTV) consensus change, and relay policy preparation for BIP113. It is
recommended to upgrade to this version as soon as possible.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility. There are no
known problems when downgrading from 0.11.x to 0.10.x.

Notable changes since 0.11.1

BIP65 soft fork to enforce OP_CHECKLOCKTIMEVERIFY opcode

This release includes several changes related to the BIP65 [https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki] soft fork
which redefines the existing OP_NOP2 opcode as OP_CHECKLOCKTIMEVERIFY
(CLTV) so that a transaction output can be made unspendable until a
specified point in the future.

	This release will only relay and mine transactions spending a CLTV
output if they comply with the BIP65 rules as provided in code.

	This release will produce version 4 blocks by default. Please see the
notice to miners below.

	Once 951 out of a sequence of 1,001 blocks on the local node’s best block
chain contain version 4 (or higher) blocks, this release will no
longer accept new version 3 blocks and it will only accept version 4
blocks if they comply with the BIP65 rules for CLTV.

For more information about the soft-forking change, please see
https://github.com/bitcoin/bitcoin/pull/6351

Graphs showing the progress towards block version 4 adoption may be
found at the URLs below:

	Block versions over the last 50,000 blocks as progress towards BIP65
consensus enforcement: http://bitcoin.sipa.be/ver-50k.png

	Block versions over the last 2,000 blocks showing the days to the
earliest possible BIP65 consensus-enforced block: http://bitcoin.sipa.be/ver-2k.png

Notice to miners: Bitcoin Core’s block templates are now for
version 4 blocks only, and any mining software relying on its
getblocktemplate must be updated in parallel to use libblkmaker either
version 0.4.3 or any version from 0.5.2 onward.

	If you are solo mining, this will affect you the moment you upgrade
Bitcoin Core, which must be done prior to BIP65 achieving its 951/1001
status.

	If you are mining with the stratum mining protocol: this does not
affect you.

	If you are mining with the getblocktemplate protocol to a pool: this
will affect you at the pool operator’s discretion, which must be no
later than BIP65 achieving its 951/1001 status.

BIP113 mempool-only locktime enforcement using GetMedianTimePast()

Bitcoin transactions currently may specify a locktime indicating when
they may be added to a valid block. Current consensus rules require
that blocks have a block header time greater than the locktime specified
in any transaction in that block.

Miners get to choose what time they use for their header time, with the
consensus rule being that no node will accept a block whose time is more
than two hours in the future. This creates a incentive for miners to
set their header times to future values in order to include locktimed
transactions which weren’t supposed to be included for up to two more
hours.

The consensus rules also specify that valid blocks may have a header
time greater than that of the median of the 11 previous blocks. This
GetMedianTimePast() time has a key feature we generally associate with
time: it can’t go backwards.

BIP113 [https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki] specifies a soft fork (not enforced in this release) that
weakens this perverse incentive for individual miners to use a future
time by requiring that valid blocks have a computed GetMedianTimePast()
greater than the locktime specified in any transaction in that block.

Mempool inclusion rules currently require transactions to be valid for
immediate inclusion in a block in order to be accepted into the mempool.
This release begins applying the BIP113 rule to received transactions,
so transaction whose time is greater than the GetMedianTimePast() will
no longer be accepted into the mempool.

Implication for miners: you will begin rejecting transactions that
would not be valid under BIP113, which will prevent you from producing
invalid blocks if/when BIP113 is enforced on the network. Any
transactions which are valid under the current rules but not yet valid
under the BIP113 rules will either be mined by other miners or delayed
until they are valid under BIP113. Note, however, that time-based
locktime transactions are more or less unseen on the network currently.

Implication for users: GetMedianTimePast() always trails behind the
current time, so a transaction locktime set to the present time will be
rejected by nodes running this release until the median time moves
forward. To compensate, subtract one hour (3,600 seconds) from your
locktimes to allow those transactions to be included in mempools at
approximately the expected time.

Windows bug fix for corrupted UTXO database on unclean shutdowns

Several Windows users reported that they often need to reindex the
entire blockchain after an unclean shutdown of Bitcoin Core on Windows
(or an unclean shutdown of Windows itself). Although unclean shutdowns
remain unsafe, this release no longer relies on memory-mapped files for
the UTXO database, which significantly reduced the frequency of unclean
shutdowns leading to required reindexes during testing.

For more information, see: https://github.com/bitcoin/bitcoin/pull/6917

Other fixes for database corruption on Windows are expected in the
next major release.

0.11.2 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

	#6124 684636b Make CScriptNum() take nMaxNumSize as an argument

	#6124 4fa7a04 Replace NOP2 with CHECKLOCKTIMEVERIFY (BIP65)

	#6124 6ea5ca4 Enable CHECKLOCKTIMEVERIFY as a standard script verify flag

	#6351 5e82e1c Add CHECKLOCKTIMEVERIFY (BIP65) soft-fork logic

	#6353 ba1da90 Show softfork status in getblockchaininfo

	#6351 6af25b0 Add BIP65 to getblockchaininfo softforks list

	#6688 01878c9 Fix locking in GetTransaction

	#6653 b3eaa30 [Qt] Raise debug window when requested

	#6600 1e672ae Debian/Ubuntu: Include bitcoin-tx binary

	#6600 2394f4d Debian/Ubuntu: Split bitcoin-tx into its own package

	#5987 33d6825 Bugfix: Allow mining on top of old tip blocks for testnet

	#6852 21e58b8 build: make sure OpenSSL heeds noexecstack

	#6846 af6edac alias -h for --help

	#6867 95a5039 Set TCP_NODELAY on P2P sockets.

	#6856 dfe55bd Do not allow blockfile pruning during reindex.

	#6566 a1d3c6f Add rules–presently disabled–for using GetMedianTimePast as end point for lock-time calculations

	#6566 f720c5f Enable policy enforcing GetMedianTimePast as the end point of lock-time constraints

	#6917 0af5b8e leveldb: Win32WritableFile without memory mapping

	#6948 4e895b0 Always flush block and undo when switching to new file

Credits

Thanks to everyone who directly contributed to this release:

	Alex Morcos

	฿tcDrak

	Chris Kleeschulte

	Daniel Cousens

	Diego Viola

	Eric Lombrozo

	Esteban Ordano

	Gregory Maxwell

	Luke Dashjr

	Marco Falke

	Mark Friedenbach

	Matt Corallo

	Micha

	Mitchell Cash

	Peter Todd

	Pieter Wuille

	Wladimir J. van der Laan

	Zak Wilcox

And those who contributed additional code review and/or security research.

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Bitcoin version 0.4.4 is now available for download at:
http://luke.dashjr.org/programs/bitcoin/files/bitcoind-0.4.4/

This is a bugfix-only release based on 0.4.0.

Please note that the wxBitcoin GUI client is no longer maintained nor supported. If someone would like to step up to maintain this, they should contact Luke-Jr.

Please report bugs for the daemon only using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.4.4#.tar.gz

BUG FIXES

Limit the number of orphan transactions stored in memory, to prevent a potential denial-of-service attack by flooding orphan transactions. Also never store invalid transactions at all.
Fix possible buffer overflow on systems with very long application data paths. This is not exploitable.
Resolved multiple bugs preventing long-term unlocking of encrypted wallets (issue #922).
Only send local IP in “version” messages if it is globally routable (ie, not private), and try to get such an IP from UPnP if applicable.
Reannounce UPnP port forwards every 20 minutes, to workaround routers expiring old entries, and allow the -upnp option to override any stored setting.
Various memory leaks and potential null pointer deferences have been
fixed.
Several shutdown issues have been fixed.
Check that keys stored in the wallet are valid at startup, and if not,
report corruption.
Various build fixes.
If no password is specified to bitcoind, recommend a secure password.
Update hard-coded fallback seed nodes, choosing recent ones with long uptime and versions at least 0.4.0.
Add checkpoint at block 168,000.

 <no title>

 Never released or release notes were lost.

 <no title>

 Win32, Linux, MacOSX and source releases for bitcoin v0.3.23 have been uploaded to
https://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.23/

This is another quick bugfix release, trying to deal with the influx of new bitcoin users.

Main items of note:

	P2P connect-to-node logic changed to reduce timeout a bit. The network saw a huge influx of new users, who do not permit incoming connections. This change is a short-term hack, to more quickly hunt for useful P2P connections. Better “leaf node” logic is in the works, but this should let us limp along until then. One may use -upnp to properly forward ports, and help the network.

	Transaction fee reduced to 0.0005 for new transactions

	Client will relay transactions with fees as low as 0.0001 BTC

 How to Upgrade

 Bitcoin Core version 0.9.0 is now available from:

https://bitcoin.org/bin/0.9.0/

This is a new major version release, bringing both new features and
bug fixes.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), uninstall all
earlier versions of Bitcoin, then run the installer (on Windows) or just copy
over /Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.0 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

On Windows, do not forget to uninstall all earlier versions of the Bitcoin
client first, especially if you are switching to the 64-bit version.

Windows 64-bit installer

New in 0.9.0 is the Windows 64-bit version of the client. There have been
frequent reports of users running out of virtual memory on 32-bit systems
during the initial sync. Because of this it is recommended to install the
64-bit version if your system supports it.

NOTE: Release candidate 2 Windows binaries are not code-signed; use PGP
and the SHA256SUMS.asc file to make sure your binaries are correct.
In the final 0.9.0 release, Windows setup.exe binaries will be code-signed.

OSX 10.5 / 32-bit no longer supported

0.9.0 drops support for older Macs. The minimum requirements are now:

	A 64-bit-capable CPU (see http://support.apple.com/kb/ht3696);

	Mac OS 10.6 or later (see https://support.apple.com/kb/ht1633).

Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9 and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).

Rebranding to Bitcoin Core

To reduce confusion between Bitcoin-the-network and Bitcoin-the-software we
have renamed the reference client to Bitcoin Core.

OP_RETURN and data in the block chain

On OP_RETURN: There was been some confusion and misunderstanding in
the community, regarding the OP_RETURN feature in 0.9 and data in the
blockchain. This change is not an endorsement of storing data in the
blockchain. The OP_RETURN change creates a provably-prunable output,
to avoid data storage schemes – some of which were already deployed –
that were storing arbitrary data such as images as forever-unspendable
TX outputs, bloating bitcoin’s UTXO database.

Storing arbitrary data in the blockchain is still a bad idea; it is less
costly and far more efficient to store non-currency data elsewhere.

Autotools build system

For 0.9.0 we switched to an autotools-based build system instead of individual
(q)makefiles.

Using the standard ”./autogen.sh; ./configure; make” to build Bitcoin-Qt and
bitcoind makes it easier for experienced open source developers to contribute
to the project.

Be sure to check doc/build-*.md for your platform before building from source.

Bitcoin-cli

Another change in the 0.9 release is moving away from the bitcoind executable
functioning both as a server and as a RPC client. The RPC client functionality
(“tell the running bitcoin daemon to do THIS”) was split into a separate
executable, ‘bitcoin-cli’. The RPC client code will eventually be removed from
bitcoind, but will be kept for backwards compatibility for a release or two.

walletpassphrase RPC

The behavior of the walletpassphrase RPC when the wallet is already unlocked
has changed between 0.8 and 0.9.

The 0.8 behavior of walletpassphrase is to fail when the wallet is already unlocked:

> walletpassphrase 1000
walletunlocktime = now + 1000
> walletpassphrase 10
Error: Wallet is already unlocked (old unlock time stays)

The new behavior of walletpassphrase is to set a new unlock time overriding
the old one:

> walletpassphrase 1000
walletunlocktime = now + 1000
> walletpassphrase 10
walletunlocktime = now + 10 (overriding the old unlock time)

Transaction malleability-related fixes

This release contains a few fixes for transaction ID (TXID) malleability
issues:

	-nospendzeroconfchange command-line option, to avoid spending
zero-confirmation change

	IsStandard() transaction rules tightened to prevent relaying and mining of
mutated transactions

	Additional information in listtransactions/gettransaction output to
report wallet transactions that conflict with each other because
they spend the same outputs.

	Bug fixes to the getbalance/listaccounts RPC commands, which would report
incorrect balances for double-spent (or mutated) transactions.

	New option: -zapwallettxes to rebuild the wallet’s transaction information

Transaction Fees

This release drops the default fee required to relay transactions across the
network and for miners to consider the transaction in their blocks to
0.01mBTC per kilobyte.

Note that getting a transaction relayed across the network does NOT guarantee
that the transaction will be accepted by a miner; by default, miners fill
their blocks with 50 kilobytes of high-priority transactions, and then with
700 kilobytes of the highest-fee-per-kilobyte transactions.

The minimum relay/mining fee-per-kilobyte may be changed with the
minrelaytxfee option. Note that previous releases incorrectly used
the mintxfee setting to determine which low-priority transactions should
be considered for inclusion in blocks.

The wallet code still uses a default fee for low-priority transactions of
0.1mBTC per kilobyte. During periods of heavy transaction volume, even this
fee may not be enough to get transactions confirmed quickly; the mintxfee
option may be used to override the default.

0.9.0 Release notes

RPC:

	New notion of ‘conflicted’ transactions, reported as confirmations: -1

	‘listreceivedbyaddress’ now provides tx ids

	Add raw transaction hex to ‘gettransaction’ output

	Updated help and tests for ‘getreceivedby(account|address)’

	In ‘getblock’, accept 2nd ‘verbose’ parameter, similar to getrawtransaction,
but defaulting to 1 for backward compatibility

	Add ‘verifychain’, to verify chain database at runtime

	Add ‘dumpwallet’ and ‘importwallet’ RPCs

	‘keypoolrefill’ gains optional size parameter

	Add ‘getbestblockhash’, to return tip of best chain

	Add ‘chainwork’ (the total work done by all blocks since the genesis block)
to ‘getblock’ output

	Make RPC password resistant to timing attacks

	Clarify help messages and add examples

	Add ‘getrawchangeaddress’ call for raw transaction change destinations

	Reject insanely high fees by default in ‘sendrawtransaction’

	Add RPC call ‘decodescript’ to decode a hex-encoded transaction script

	Make ‘validateaddress’ provide redeemScript

	Add ‘getnetworkhashps’ to get the calculated network hashrate

	New RPC ‘ping’ command to request ping, new ‘pingtime’ and ‘pingwait’ fields
in ‘getpeerinfo’ output

	Adding new ‘addrlocal’ field to ‘getpeerinfo’ output

	Add verbose boolean to ‘getrawmempool’

	Add rpc command ‘getunconfirmedbalance’ to obtain total unconfirmed balance

	Explicitly ensure that wallet is unlocked in importprivkey

	Add check for valid keys in importprivkey

Command-line options:

	New option: -nospendzeroconfchange to never spend unconfirmed change outputs

	New option: -zapwallettxes to rebuild the wallet’s transaction information

	Rename option ‘-tor’ to ‘-onion’ to better reflect what it does

	Add ‘-disablewallet’ mode to let bitcoind run entirely without wallet (when
built with wallet)

	Update default ‘-rpcsslciphers’ to include TLSv1.2

	make ‘-logtimestamps’ default on and rework help-message

	RPC client option: ‘-rpcwait’, to wait for server start

	Remove ‘-logtodebugger’

	Allow -noserver with bitcoind

Block-chain handling and storage:

	Update leveldb to 1.15

	Check for correct genesis (prevent cases where a datadir from the wrong
network is accidentally loaded)

	Allow txindex to be removed and add a reindex dialog

	Log aborted block database rebuilds

	Store orphan blocks in serialized form, to save memory

	Limit the number of orphan blocks in memory to 750

	Fix non-standard disconnected transactions causing mempool orphans

	Add a new checkpoint at block 279,000

Wallet:

	Bug fixes and new regression tests to correctly compute
the balance of wallets containing double-spent (or mutated) transactions

	Store key creation time. Calculate whole-wallet birthday.

	Optimize rescan to skip blocks prior to birthday

	Let user select wallet file with -wallet=foo.dat

	Consider generated coins mature at 101 instead of 120 blocks

	Improve wallet load time

	Don’t count txins for priority to encourage sweeping

	Don’t create empty transactions when reading a corrupted wallet

	Fix rescan to start from beginning after importprivkey

	Only create signatures with low S values

Mining:

	Increase default -blockmaxsize/prioritysize to 750K/50K

	‘getblocktemplate’ does not require a key to create a block template

	Mining code fee policy now matches relay fee policy

Protocol and network:

	Drop the fee required to relay a transaction to 0.01mBTC per kilobyte

	Send tx relay flag with version

	New ‘reject’ P2P message (BIP 0061, see
https://gist.github.com/gavinandresen/7079034 for draft)

	Dump addresses every 15 minutes instead of 10 seconds

	Relay OP_RETURN data TxOut as standard transaction type

	Remove CENT-output free transaction rule when relaying

	Lower maximum size for free transaction creation

	Send multiple inv messages if mempool.size > MAX_INV_SZ

	Split MIN_PROTO_VERSION into INIT_PROTO_VERSION and MIN_PEER_PROTO_VERSION

	Do not treat fFromMe transaction differently when broadcasting

	Process received messages one at a time without sleeping between messages

	Improve logging of failed connections

	Bump protocol version to 70002

	Add some additional logging to give extra network insight

	Added new DNS seed from bitcoinstats.com

Validation:

	Log reason for non-standard transaction rejection

	Prune provably-unspendable outputs, and adapt consistency check for it.

	Detect any sufficiently long fork and add a warning

	Call the -alertnotify script when we see a long or invalid fork

	Fix multi-block reorg transaction resurrection

	Reject non-canonically-encoded serialization sizes

	Reject dust amounts during validation

	Accept nLockTime transactions that finalize in the next block

Build system:

	Switch to autotools-based build system

	Build without wallet by passing --disable-wallet to configure, this
removes the BerkeleyDB dependency

	Upgrade gitian dependencies (libpng, libz, libupnpc, boost, openssl) to more
recent versions

	Windows 64-bit build support

	Solaris compatibility fixes

	Check integrity of gitian input source tarballs

	Enable full GCC Stack-smashing protection for all OSes

GUI:

	Switch to Qt 5.2.0 for Windows build

	Add payment request (BIP 0070) support

	Improve options dialog

	Show transaction fee in new send confirmation dialog

	Add total balance in overview page

	Allow user to choose data directory on first start, when data directory is
missing, or when the -choosedatadir option is passed

	Save and restore window positions

	Add vout index to transaction id in transactions details dialog

	Add network traffic graph in debug window

	Add open URI dialog

	Add Coin Control Features

	Improve receive coins workflow: make the ‘Receive’ tab into a form to request
payments, and move historical address list functionality to File menu.

	Rebrand to Bitcoin Core

	Move initialization/shutdown to a thread. This prevents “Not responding”
messages during startup. Also show a window during shutdown.

	Don’t regenerate autostart link on every client startup

	Show and store message of normal bitcoin:URI

	Fix richtext detection hang issue on very old Qt versions

	OS X: Make use of the 10.8+ user notification center to display Growl-like
notifications

	OS X: Added NSHighResolutionCapable flag to Info.plist for better font
rendering on Retina displays.

	OS X: Fix bitcoin-qt startup crash when clicking dock icon

	Linux: Fix Gnome bitcoin: URI handler

Miscellaneous:

	Add Linux script (contrib/qos/tc.sh) to limit outgoing bandwidth

	Add ‘-regtest’ mode, similar to testnet but private with instant block
generation with ‘setgenerate’ RPC.

	Add ‘linearize.py’ script to contrib, for creating bootstrap.dat

	Add separate bitcoin-cli client

Credits

Thanks to everyone who contributed to this release:

	Andrey

	Ashley Holman

	b6393ce9-d324-4fe1-996b-acf82dbc3d53

	bitsofproof

	Brandon Dahler

	Calvin Tam

	Christian Decker

	Christian von Roques

	Christopher Latham

	Chuck

	coblee

	constantined

	Cory Fields

	Cozz Lovan

	daniel

	Daniel Larimer

	David Hill

	Dmitry Smirnov

	Drak

	Eric Lombrozo

	fanquake

	fcicq

	Florin

	frewil

	Gavin Andresen

	Gregory Maxwell

	gubatron

	Guillermo Céspedes Tabárez

	Haakon Nilsen

	HaltingState

	Han Lin Yap

	harry

	Ian Kelling

	Jeff Garzik

	Johnathan Corgan

	Jonas Schnelli

	Josh Lehan

	Josh Triplett

	Julian Langschaedel

	Kangmo

	Lake Denman

	Luke Dashjr

	Mark Friedenbach

	Matt Corallo

	Michael Bauer

	Michael Ford

	Michagogo

	Midnight Magic

	Mike Hearn

	Nils Schneider

	Noel Tiernan

	Olivier Langlois

	patrick s

	Patrick Strateman

	paveljanik

	Peter Todd

	phantomcircuit

	phelixbtc

	Philip Kaufmann

	Pieter Wuille

	Rav3nPL

	R E Broadley

	regergregregerrge

	Robert Backhaus

	Roman Mindalev

	Rune K. Svendsen

	Ryan Niebur

	Scott Ellis

	Scott Willeke

	Sergey Kazenyuk

	Shawn Wilkinson

	Sined

	sje

	Subo1978

	super3

	Tamas Blummer

	theuni

	Thomas Holenstein

	Timon Rapp

	Timothy Stranex

	Tom Geller

	Torstein Husebø

	Vaclav Vobornik

	vhf / victor felder

	Vinnie Falco

	Warren Togami

	Wil Bown

	Wladimir J. van der Laan

 <no title>

 Version 0.3.13 is now available. You should upgrade to prevent potential problems with 0/unconfirmed transactions. Note: 0.3.13 prevents problems if you haven’t already spent a 0/unconfirmed transaction, but if that already happened, you need 0.3.13.2.

Changes:

	Don’t count or spend payments until they have 1 confirmation.

	Internal version number from 312 to 31300.

	Only accept transactions sent by IP address if -allowreceivebyip is specified.

	Dropped DB_PRIVATE Berkeley DB flag.

	Fix problem sending the last cent with sub-cent fractional change.

	Auto-detect whether to use 128-bit 4-way SSE2 on Linux.
Gavin Andresen:

	Option -rpcallowip= to accept json-rpc connections from another machine.

	Clean shutdown on SIGTERM on Linux.

Download:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.13/

(Thanks Laszlo for the Mac OSX build!)

Note:
The SSE2 auto-detect in the Linux 64-bit version doesn’t work with AMD in 64-bit mode. Please try this instead and let me know if it gets it right:
http://www.bitcoin.org/download/bitcoin-0.3.13.1-specialbuild-linux64.tar.gz

You can still control the SSE2 use manually with -4way and -4way=0.

Version 0.3.13.2 (SVN rev 161) has improvements for the case where you already had 0/unconfirmed transactions that you might have already spent. Here’s a Windows build of it:
http://www.bitcoin.org/download/bitcoin-0.3.13.2-win32-setup.exe

 How to Upgrade

 Bitcoin-Qt version 0.8.5 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.5/

This is a maintenance release to fix a critical bug;
we urge all users to upgrade.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.5 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

0.8.5 Release notes

Bugs fixed

Transactions with version numbers larger than 0x7fffffff were
incorrectly being relayed and included in blocks.

Blocks containing transactions with version numbers larger
than 0x7fffffff caused the code that checks for LevelDB database
inconsistencies at startup to erroneously report database
corruption and suggest that you reindex your database.

This release also contains a non-critical fix to the code that
enforces BIP 34 (block height in the coinbase transaction).

–

Thanks to Gregory Maxwell and Pieter Wuille for quickly
identifying and fixing the transaction version number bug.

 <no title>

 Version 0.3.14 is now available
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.14/

Changes:

	Key pool feature for safer wallet backup
Gavin Andresen:

	TEST network mode with switch -testnet

	Option to use SSL for JSON-RPC connections on unix/osx

	validateaddress RPC command
eurekafag:

	Russian translation

 How to Upgrade

 Bitcoin-Qt version 0.8.6 final is now available from:

http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.6/

This is a maintenance release to fix a critical bug; we urge all users to upgrade.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you already downloaded 0.8.6rc1 you do not need to re-download. This release is exactly the same.

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.6 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

0.8.6 Release notes

	Default block size increase for miners.
(see https://gist.github.com/gavinandresen/7670433#086-accept-into-block)

	Remove the all-outputs-must-be-greater-than-CENT-to-qualify-as-free rule for relaying
(see https://gist.github.com/gavinandresen/7670433#086-relaying)

	Lower maximum size for free transaction creation
(see https://gist.github.com/gavinandresen/7670433#086-wallet)

	OSX block chain database corruption fixes
	Update leveldb to 1.13

	Use fcntl with F_FULLSYNC instead of fsync on OSX

	Use native Darwin memory barriers

	Replace use of mmap in leveldb for improved reliability (only on OSX)

	Fix nodes forwarding transactions with empty vins and getting banned

	Network code performance and robustness improvements

	Additional debug.log logging for diagnosis of network problems, log timestamps by default

	Fix Bitcoin-Qt startup crash when clicking dock icon on OSX

	Fix memory leaks in CKey::SetCompactSignature() and Key::SignCompact()

	Fix rare GUI crash on send

	Various small GUI, documentation and build fixes

Warning

	There have been frequent reports of users running out of virtual memory on 32-bit systems
during the initial sync.
Hence it is recommended to use a 64-bit executable if possible.
A 64-bit executable for Windows is planned for 0.9.

Note: Gavin Andresen’s GPG signing key for SHA256SUMS.asc has been changed from key id 1FC730C1 to sub key 7BF6E212 (see https://github.com/bitcoin/bitcoin.org/pull/279).

 <no title>

 The maxsendbuffer bug (0.3.20.1 clients not being able to download the block chain from other 0.3.20.1 clients) was only going to get
worse as people upgraded, so I cherry-picked the bug fix and created a minor release yesterday.

The Amazon Machine Images I used to do the builds are available:

ami-38a05251 Bitcoin-v0.3.20.2 Mingw (Windows; Administrator password ‘bitcoin development’)
ami-30a05259 Bitcoin_0.3.20.2 Linux32
ami-8abc4ee3 Bitcoin_0.3.20.2 Linux64

(mac build will be done soon)

If you have already downloaded version 0.3.20.1, please either add this to your bitcoin.conf file:

maxsendbuffer=10000
maxreceivebuffer=10000

... or download the new version.

 <no title>

 Bitcoin version 0.6.3 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.3/

This is a bug-fix release, with no new features.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

CHANGE SUMMARY

Fixed a serious denial-of-service attack that could cause the
bitcoin process to become unresponsive. Thanks to Sergio Lerner
for finding and responsibly reporting the problem. (CVE-2012-3789)

Optimized the process of checking transaction signatures, to
speed up processing of new block messages and make propagating
blocks across the network faster.

Fixed an obscure bug that could cause the bitcoin process to get
stuck on an invalid block-chain, if the invalid chain was
hundreds of blocks long.

Bitcoin-Qt no longer automatically selects the first address
in the address book (Issue #1384).

Fixed minimize-to-dock behavior of Bitcon-Qt on the Mac.

Added a block checkpoint at block 185,333 to speed up initial
blockchain download.

 <no title>

 Bitcoin version 0.5.1 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.1/

This is a bugfix-only release.

This release includes 13 translations, including 5 new translations:
Italian, Hungarian, Ukranian, Portuguese (Brazilian) and Simplified Chinese.
More translations are welcome; join the project at Transifex if you can help:
https://www.transifex.net/projects/p/bitcoin/

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; we are no longer
distributing .tar.gz files here, you can get them
directly from github:
https://github.com/bitcoin/bitcoin/tarball/v0.5.1 # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.5.1 # .zip

For Ubuntu users, there is a new ppa maintained by Matt Corallo which
you can add to your system so that it will automatically keep
bitcoin up-to-date. Just type
sudo apt-add-repository ppa:bitcoin/bitcoin
in your terminal, then install the bitcoin-qt package.

BUG FIXES

Re-enable SSL support for the JSON-RPC interface (it was unintentionally
disabled for the 0.5.0 release binaries).

The code that finds peers via “dns seeds” no longer stops bitcoin startup
if one of the dns seed machines is down.

Tooltips on the transaction list view were rendering incorrectly (as black boxes
or with a transparent background).

Prevent a denial-of-service attack involving flooding a bitcoin node with
orphan blocks.

The wallet passphrase dialog now warns you if the caps lock key was pressed.

Improved searching in addresses and labels in bitcoin-qt.

 <no title>

 Bitcoin v0.3.24 is now available for download at
https://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.24/

This is another bug fix release. We had hoped to have wallet encryption ready for release, but more urgent fixes for existing clients were needed – most notably block download problems were getting severe. Wallet encryption is ready for testing at https://github.com/bitcoin/bitcoin/pull/352 for the git-savvy, and hopefully will follow shortly in the next release, v0.4.

Notable fixes in v0.3.24, and the main reasons for this release:

F1) Block downloads were failing or taking unreasonable amounts of time to complete, because the increased size of the block chain was bumping up against some earlier buffer-size DoS limits.

F2) Fix crash caused by loss/lack of network connection.

Notable changes in v0.3.24:

C1) DNS seeding enabled by default.

C2) UPNP enabled by default in the GUI client. The percentage of bitcoin clients that accept incoming connections is quite small, and that is a problem. This should help. bitcoind, and unofficial builds, are unchanged (though we encourage use of “-upnp” to help the network!)

C3) Initial unit testing framework. Bitcoin sorely needs automated tests, and this is a beginning. Contributions welcome.

C4) Internal wallet code cleanup. While invisible to an end user, this change provides the basis for v0.4’s wallet encryption.

 How to Upgrade

 Bitcoin Core version 0.9.2 is now available from:

https://bitcoin.org/bin/0.9.2/

This is a new minor version release, bringing mostly bug fixes and some minor
improvements. OpenSSL has been updated because of a security issue (CVE-2014-0224).
Upgrading to this release is recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.2 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9.x and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).

Important changes

Gitian OSX build

The deterministic build system that was already used for Windows and Linux
builds is now used for OSX as well. Although the resulting executables have
been tested quite a bit, there could be possible regressions. Be sure to report
these on the Github bug tracker mentioned above.

Compatibility of Linux build

For Linux we now build against Qt 4.6, and filter the symbols for libstdc++ and glibc.
This brings back compatibility with

	Debian 6+ / Tails

	Ubuntu 10.04

	CentOS 6.5

0.9.2 Release notes

The OpenSSL dependency in the gitian builds has been upgraded to 1.0.1h because of CVE-2014-0224.

RPC:

	Add getwalletinfo, getblockchaininfo and getnetworkinfo calls (will replace hodge-podge getinfo at some point)

	Add a relayfee field to getnetworkinfo

	Fix RPC related shutdown hangs and leaks

	Always show syncnode in getpeerinfo

	sendrawtransaction: report the reject code and reason, and make it possible to re-send transactions that are already in the mempool

	getmininginfo show right genproclimit

Command-line options:

	Fix -printblocktree output

	Show error message if ReadConfigFile fails

Block-chain handling and storage:

	Fix for GetBlockValue() after block 13,440,000 (BIP42)

	Upgrade leveldb to 1.17

Protocol and network code:

	Per-peer block download tracking and stalled download detection

	Add new DNS seed from bitnodes.io

	Prevent socket leak in ThreadSocketHandler and correct some proxy related socket leaks

	Use pnode->nLastRecv as sync score (was the wrong way around)

Wallet:

	Make GetAvailableCredit run GetHash() only once per transaction (performance improvement)

	Lower paytxfee warning threshold from 0.25 BTC to 0.01 BTC

	Fix importwallet nTimeFirstKey (trigger necessary rescans)

	Log BerkeleyDB version at startup

	CWallet init fix

Build system:

	Add OSX build descriptors to gitian

	Fix explicit –disable-qt-dbus

	Don’t require db_cxx.h when compiling with wallet disabled and GUI enabled

	Improve missing boost error reporting

	Upgrade miniupnpc version to 1.9

	gitian-linux: –enable-glibc-back-compat for binary compatibility with old distributions

	gitian: don’t export any symbols from executable

	gitian: build against Qt 4.6

	devtools: add script to check symbols from Linux gitian executables

	Remove build-time no-IPv6 setting

GUI:

	Fix various coin control visual issues

	Show number of in/out connections in debug console

	Show weeks as well as years behind for long timespans behind

	Enable and disable the Show and Remove buttons for requested payments history based on whether any entry is selected.

	Show also value for options overridden on command line in options dialog

	Fill in label from address book also for URIs

	Fixes feel when resizing the last column on tables (issue #2862)

	Fix ESC in disablewallet mode

	Add expert section to wallet tab in optionsdialog

	Do proper boost::path conversion (fixes unicode in datadir)

	Only override -datadir if different from the default (fixes -datadir in config file)

	Show rescan progress at start-up

	Show importwallet progress

	Get required locks upfront in polling functions (avoids hanging on locks)

	Catch Windows shutdown events while client is running

	Optionally add third party links to transaction context menu

	Check for !pixmap() before trying to export QR code (avoids crashes when no QR code could be generated)

	Fix “Start bitcoin on system login”

Miscellaneous:

	Replace non-threadsafe C functions (gmtime, strerror and setlocale)

	Add missing cs_main and wallet locks

	Avoid exception at startup when system locale not recognized

	Changed bitrpc.py’s raw_input to getpass for passwords to conceal characters during command line input

	devtools: add a script to fetch and postprocess translations

Credits

Thanks to everyone who contributed to this release:

	Addy Yeow

	Altoidnerd

	Andrea D’Amore

	Andreas Schildbach

	Bardi Harborow

	Brandon Dahler

	Bryan Bishop

	Chris Beams

	Christian von Roques

	Cory Fields

	Cozz Lovan

	daniel

	Daniel Newton

	David A. Harding

	ditto-b

	duanemoody

	Eric S. Bullington

	Fabian Raetz

	Gavin Andresen

	Gregory Maxwell

	gubatron

	Haakon Nilsen

	harry

	Hector Jusforgues

	Isidoro Ghezzi

	Jeff Garzik

	Johnathan Corgan

	jtimon

	Kamil Domanski

	langerhans

	Luke Dashjr

	Manuel Araoz

	Mark Friedenbach

	Matt Corallo

	Matthew Bogosian

	Meeh

	Michael Ford

	Michagogo

	Mikael Wikman

	Mike Hearn

	olalonde

	paveljanik

	peryaudo

	Philip Kaufmann

	philsong

	Pieter Wuille

	R E Broadley

	richierichrawr

	Rune K. Svendsen

	rxl

	shshshsh

	Simon de la Rouviere

	Stuart Cardall

	super3

	Telepatheic

	Thomas Zander

	Torstein Husebø

	Warren Togami

	Wladimir J. van der Laan

	Yoichi Hirai

 <no title>

 Bitcoin version 0.5.3 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.3/

This is a bugfix-only release based on 0.5.1.
It also includes a few protocol updates.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.5.3#.tar.gz

PROTOCOL UPDATES

BIP 30: Introduce a new network rule: “a block is not valid if it contains a transaction whose hash already exists in the block chain, unless all that transaction’s outputs were already spent before said block” beginning on March 15, 2012, 00:00 UTC.
On testnet, allow mining of min-difficulty blocks if 20 minutes have gone by without mining a regular-difficulty block. This is to make testing Bitcoin easier, and will not affect normal mode.

BUG FIXES

Limit the number of orphan transactions stored in memory, to prevent a potential denial-of-service attack by flooding orphan transactions. Also never store invalid transactions at all.
Fix possible buffer overflow on systems with very long application data paths. This is not exploitable.
Resolved multiple bugs preventing long-term unlocking of encrypted wallets
(issue #922).
Only send local IP in “version” messages if it is globally routable (ie, not private), and try to get such an IP from UPnP if applicable.
Reannounce UPnP port forwards every 20 minutes, to workaround routers expiring old entries, and allow the -upnp option to override any stored setting.
Skip splash screen when -min is used, and fix Minimize to Tray function.
Do not blank “label” in Bitcoin-Qt “Send” tab, if the user has already entered something.
Correct various labels and messages.
Various memory leaks and potential null pointer deferences have been fixed.
Handle invalid Bitcoin URIs using “bitcoin://” instead of “bitcoin:”.
Several shutdown issues have been fixed.
Revert to “global progress indication”, as starting from zero every time was considered too confusing for many users.
Check that keys stored in the wallet are valid at startup, and if not, report corruption.
Enable accessible widgets on Windows, so that people with screen readers such as NVDA can make sense of it.
Various build fixes.
If no password is specified to bitcoind, recommend a secure password.
Automatically focus and scroll to new “Send coins” entries in Bitcoin-Qt.
Show a message box for –help on Windows, for Bitcoin-Qt.
Add missing “About Qt” menu option to show built-in Qt About dialog.
Don’t show “-daemon” as an option for Bitcoin-Qt, since it isn’t available.
Update hard-coded fallback seed nodes, choosing recent ones with long uptime and versions at least 0.4.0.
Add checkpoint at block 168,000.

 <no title>

 Bitcoin version 0.6.2 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.2/

This is a bug-fix and code-cleanup release, with no major new features.

Please report bugs using the github issue tracker at:
https://github.com/bitcoin/bitcoin/issues

NOTABLE CHANGES

Much faster shutdowns. However, the blkindex.dat file is no longer
portable to different data directories by default. If you need a
portable blkindex.dat file then run with the new -detachdb=1 option
or the “Detach databases at shutdown” GUI preference.

Fixed https://github.com/bitcoin/bitcoin/issues/1065, a bug that
could cause long-running nodes to crash.

Mac and Windows binaries are compiled against OpenSSL 1.0.1b (Linux
binaries are dynamically linked to the version of OpenSSL on the system).

CHANGE SUMMARY

Use ‘git shortlog –no-merges v0.6.0..’ for a summary of this release.

Source codebase changes:

	Many source code cleanups and warnings fixes. Close to building with -Wall

	Locking overhaul, and several minor locking fixes

	Several source code portability fixes, e.g. FreeBSD

JSON-RPC interface changes:

	addmultisigaddress enabled for mainnet (previously only enabled for testnet)

Network protocol changes:

	protocol version 60001

	added nonce value to “ping” message (BIP 31)

	added new “pong” message (BIP 31)

Backend storage changes:

	Less redundant database flushing, especially during initial block download

	Shutdown improvements (see above)

Qt user interface:

	minor URI handling improvements

	progressbar improvements

	error handling improvements (show message box rather than console exception,
etc.)

	by popular request, make 4th bar of connection icon green

 Upgrading and downgrading

 Bitcoin Core version 0.9.3 is now available from:

https://bitcoin.org/bin/0.9.3/

This is a new minor version release, bringing only bug fixes and updated
translations. Upgrading to this release is recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.3 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9.x and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).

0.9.3 Release notes

RPC:

	Avoid a segfault on getblock if it can’t read a block from disk

	Add paranoid return value checks in base58

Protocol and network code:

	Don’t poll showmyip.com, it doesn’t exist anymore

	Add a way to limit deserialized string lengths and use it

	Add a new checkpoint at block 295,000

	Increase IsStandard() scriptSig length

	Avoid querying DNS seeds, if we have open connections

	Remove a useless millisleep in socket handler

	Stricter memory limits on CNode

	Better orphan transaction handling

	Add -maxorphantx=<n> and -maxorphanblocks=<n> options for control over the maximum orphan transactions and blocks

Wallet:

	Check redeemScript size does not exceed 520 byte limit

	Ignore (and warn about) too-long redeemScripts while loading wallet

GUI:

	fix ‘opens in testnet mode when presented with a BIP-72 link with no fallback’

	AvailableCoins: acquire cs_main mutex

	Fix unicode character display on MacOSX

Miscellaneous:

	key.cpp: fail with a friendlier message on missing ssl EC support

	Remove bignum dependency for scripts

	Upgrade OpenSSL to 1.0.1i (see https://www.openssl.org/news/secadv_20140806.txt - just to be sure, no critical issues for Bitcoin Core)

	Upgrade miniupnpc to 1.9.20140701

	Fix boost detection in build system on some platforms

Credits

Thanks to everyone who contributed to this release:

	Andrew Poelstra

	Cory Fields

	Gavin Andresen

	Jeff Garzik

	Johnathan Corgan

	Julian Haight

	Michael Ford

	Pavel Vasin

	Peter Todd

	phantomcircuit

	Pieter Wuille

	Rose Toomey

	Ruben Dario Ponticelli

	shshshsh

	Trevin Hofmann

	Warren Togami

	Wladimir J. van der Laan

	Zak Wilcox

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Please checkout the git integration branch from:

https://github.com/bitcoin/bitcoin

... and help test. The new features that need testing are:

	-nolisten : https://github.com/bitcoin/bitcoin/pull/11

	-rescan : scan block chain for missing wallet transactions

	-printtoconsole : https://github.com/bitcoin/bitcoin/pull/37

	RPC gettransaction details : https://github.com/bitcoin/bitcoin/pull/24

	listtransactions new features : https://github.com/bitcoin/bitcoin/pull/10

Bug fixes that also need testing:

	-maxconnections= : https://github.com/bitcoin/bitcoin/pull/42

	RPC listaccounts minconf : https://github.com/bitcoin/bitcoin/pull/27

	RPC move, add time to output : https://github.com/bitcoin/bitcoin/pull/21

	...and several improvements to –help output.

This needs more testing on Windows! Please drop me a quick private message, email, or IRC message if you are able to do some testing. If you find bugs, please open an issue at:

https://github.com/bitcoin/bitcoin/issues

 KNOWN ISSUES

 Bitcoin version 0.7.1 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.7.1/

This is a bug-fix minor release.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; you can get
source-only tarballs/zipballs directly from there:
https://github.com/bitcoin/bitcoin/tarball/v0.7.1 # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.7.1 # .zip

Ubuntu Linux users can use the “Personal Package Archive” (PPA)
maintained by Matt Corallo to automatically keep
up-to-date. Just type:
sudo apt-add-repository ppa:bitcoin/bitcoin
sudo apt-get update
in your terminal, then install the bitcoin-qt package:
sudo apt-get install bitcoin-qt

KNOWN ISSUES

Mac OSX 10.5 is no longer supported.

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you were running on Linux with a version that might have been compiled
with a different version of Berkeley DB (for example, if you were using an
Ubuntu PPA version), then run the old version again with the -detachdb
argument and shut it down; if you do not, then the new version will not
be able to read the database files and will exit with an error.

Explanation of -detachdb (and the new “stop true” RPC command):
The Berkeley DB database library stores data in both ”.dat” and
“log” files, so the database is always in a consistent state,
even in case of power failure or other sudden shutdown. The
format of the ”.dat” files is portable between different
versions of Berkeley DB, but the “log” files are not– even minor
version differences may have incompatible “log” files. The
-detachdb option moves any pending changes from the “log” files
to the “blkindex.dat” file for maximum compatibility, but makes
shutdown much slower. Note that the “wallet.dat” file is always
detached, and versions prior to 0.6.0 detached all databases
at shutdown.

New features

	Added a boolean argument to the RPC ‘stop’ command, if true sets
-detachdb to create standalone database .dat files before shutting down.

	-salvagewallet command-line option, which moves any existing wallet.dat
to wallet.{timestamp}.dat and then attempts to salvage public/private
keys and master encryption keys (if the wallet is encrypted) into
a new wallet.dat. This should only be used if your wallet becomes
corrupted, and is not intended to replace regular wallet backups.

	Import $DataDir/bootstrap.dat automatically, if it exists.

Dependency changes

	Qt 4.8.2 for Windows builds

	openssl 1.0.1c

Bug fixes

	Clicking on a bitcoin: URI on Windows should now launch Bitcoin-Qt properly.

	When running -testnet, use RPC port 18332 by default.

	Better detection and handling of corrupt wallet.dat and blkindex.dat files.
Previous versions would crash with a DB_RUNRECOVERY exception, this
version detects most problems and tells you how to recover if it
cannot recover itself.

	Fixed an uninitialized variable bug that could cause transactions to
be reported out of order.

	Fixed a bug that could cause occasional crashes on exit.

	Warn the user that they need to create fresh wallet backups after they
encrypt their wallet.

Thanks to everybody who contributed to this release:

Gavin Andresen
Jeff Garzik
Luke Dashjr
Mark Friedenbach
Matt Corallo
Philip Kaufmann
Pieter Wuille
Rune K. Svendsen
Virgil Dupras
Wladimir J. van der Laan
fanquake
kjj2
xanatos

 How to Upgrade

 Bitcoin version 0.7.2 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.7.2

This is a bug-fix minor release.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you were running on Linux with a version that might have been compiled
with a different version of Berkeley DB (for example, if you were using an
Ubuntu PPA version), then run the old version again with the -detachdb
argument and shut it down; if you do not, then the new version will not
be able to read the database files and will exit with an error.

Explanation of -detachdb (and the new “stop true” RPC command):
The Berkeley DB database library stores data in both ”.dat” and
“log” files, so the database is always in a consistent state,
even in case of power failure or other sudden shutdown. The
format of the ”.dat” files is portable between different
versions of Berkeley DB, but the “log” files are not– even minor
version differences may have incompatible “log” files. The
-detachdb option moves any pending changes from the “log” files
to the “blkindex.dat” file for maximum compatibility, but makes
shutdown much slower. Note that the “wallet.dat” file is always
detached, and versions prior to 0.6.0 detached all databases
at shutdown.

Bug fixes

	Prevent RPC ‘move’ from deadlocking. This was caused by trying to lock the
database twice.

	Fix use-after-free problems in initialization and shutdown, the latter of
which caused Bitcoin-Qt to crash on Windows when exiting.

	Correct library linking so building on Windows natively works.

	Avoid a race condition and out-of-bounds read in block creation/mining code.

	Improve platform compatibility quirks, including fix for 100% CPU utilization
on FreeBSD 9.

	A few minor corrections to error handling, and updated translations.

	OSX 10.5 supported again

Thanks to everybody who contributed to this release:

Alex
dansmith
Gavin Andresen
Gregory Maxwell
Jeff Garzik
Luke Dashjr
Philip Kaufmann
Pieter Wuille
Wladimir J. van der Laan
grimd34th

 <no title>

 Bitcoin version 0.5.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.0/

The major change for this release is a completely new graphical interface that uses the Qt user interface toolkit.

This release include German, Spanish, Spanish-Castilian, Norwegian and Dutch translations. More translations are welcome; join the project at Transifex if you can help:
https://www.transifex.net/projects/p/bitcoin/

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

For Ubuntu users, there is a new ppa maintained by Matt Corallo which you can add to your system so that it will automatically keep bitcoin up-to-date. Just type “sudo apt-add-repository ppa:bitcoin/bitcoin” in your terminal, then install the bitcoin-qt package.

MAJOR BUG FIX (CVE-2011-4447)

The wallet encryption feature introduced in Bitcoin version 0.4.0 did not sufficiently secure the private keys. An attacker who
managed to get a copy of your encrypted wallet.dat file might be able to recover some or all of the unencrypted keys and steal the
associated coins.

If you have a previously encrypted wallet.dat, the first time you run bitcoin-qt or bitcoind the wallet will be rewritten, Bitcoin will
shut down, and you will be prompted to restart it to run with the new, properly encrypted file.

If you had a previously encrypted wallet.dat that might have been copied or stolen (for example, you backed it up to a public
location) you should send all of your bitcoins to yourself using a new bitcoin address and stop using any previously generated addresses.

Wallets encrypted with this version of Bitcoin are written properly.

Technical note: the encrypted wallet’s ‘keypool’ will be regenerated the first time you request a new bitcoin address; to be certain that the
new private keys are properly backed up you should:

	Run Bitcoin and let it rewrite the wallet.dat file

	Run it again, then ask it for a new bitcoin address.
Bitcoin-Qt: Address Book, then New Address...
bitcoind: run the ‘walletpassphrase’ RPC command to unlock the wallet, then run the ‘getnewaddress’ RPC command.

	If your encrypted wallet.dat may have been copied or stolen, send all of your bitcoins to the new bitcoin address.

	Shut down Bitcoin, then backup the wallet.dat file.
IMPORTANT: be sure to request a new bitcoin address before backing up, so that the ‘keypool’ is regenerated and backed up.

“Security in depth” is always a good idea, so choosing a secure location for the backup and/or encrypting the backup before uploading it is recommended. And as in previous releases, if your machine is infected by malware there are several ways an attacker might steal your bitcoins.

Thanks to Alan Reiner (etotheipi) for finding and reporting this bug.

MAJOR GUI CHANGES

“Splash” graphics at startup that show address/wallet/blockchain loading progress.

“Synchronizing with network” progress bar to show block-chain download progress.

Icons at the bottom of the window that show how well connected you are to the network, with tooltips to display details.

Drag and drop support for bitcoin: URIs on web pages.

Export transactions as a .csv file.

Many other GUI improvements, large and small.

RPC CHANGES

getmemorypool : new RPC command, provides everything needed to construct a block with a custom generation transaction and submit a solution

listsinceblock : new RPC command, list transactions since given block

signmessage/verifymessage : new RPC commands to sign a message with one of your private keys or verify that a message signed by the private key associated with a bitcoin address.

GENERAL CHANGES

Faster initial block download.

 How to Upgrade

 Bitcoin-Qt/bitcoind version 0.8.1 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.1/

This is a maintenance release that adds a new network rule to avoid
a chain-forking incompatibility with versions 0.7.2 and earlier.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.1 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

 <no title>

 bitcoind version 0.4.6 is now available for download at:
Windows: installer | zip (sig)
Source: tar.gz
bitcoind and Bitcoin-Qt version 0.6.0.7 are also tagged in git, but it is recommended to upgrade to 0.6.1.

These are bugfix-only releases.

Please report bugs by replying to this forum thread. Note that the 0.4.x wxBitcoin GUI client is no longer maintained nor supported. If someone would like to step up to maintain this, they should contact Luke-Jr.

BUG FIXES

Version 0.6.0 allowed importing invalid “private keys”, which would be unspendable; 0.6.0.7 will now verify the private key is valid, and refuse to import an invalid one
Verify status of encrypt/decrypt calls to detect failed padding
Check blocks for duplicate transactions earlier. Fixes #1167
Upgrade Windows builds to OpenSSL 1.0.1b
Set label when selecting an address that already has a label. Fixes #1080 (Bitcoin-Qt)
JSON-RPC listtransactions’s from/count handling is now fixed
Optimize and fix multithreaded access, when checking whether we already know about transactions
Fix potential networking deadlock
Proper support for Growl 1.3 notifications
Display an error, rather than crashing, if encoding a QR Code failed (0.6.0.7)
Don’t erroneously set “Display addresses” for users who haven’t explicitly enabled it (Bitcoin-Qt)
Some non-ASCII input in JSON-RPC expecting hexadecimal may have been misinterpreted rather than rejected
Missing error condition checking added
Do not show green tick unless all known blocks are downloaded. Fixes #921 (Bitcoin-Qt)
Increase time ago of last block for “up to date” status from 30 to 90 minutes
Show a message box when runaway exception happens (Bitcoin-Qt)
Use a messagebox to display the error when -server is provided without providing a rpc password
Show error message instead of exception crash when unable to bind RPC port (Bitcoin-Qt)
Correct sign message bitcoin address tooltip. Fixes #1050 (Bitcoin-Qt)
Removed “(no label)” from QR Code dialog titlebar if we have no label (0.6.0.7)
Removed an ugly line break in tooltip for mature transactions (0.6.0.7)
Add missing tooltip and key shortcut in settings dialog (part of #1088) (Bitcoin-Qt)
Work around issue in boost::program_options that prevents from compiling in clang
Fixed bugs occurring only on platforms with unsigned characters (such as ARM).
Rename make_windows_icon.py to .sh as it is a shell script. Fixes #1099 (Bitcoin-Qt)
Various trivial internal corrections to types used for counting/size loops and warnings

 <no title>

 Bitcoin-Qt version 0.8.2 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.2/

This is a maintenance release that fixes many bugs and includes
a few small new features.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.2 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

0.8.2 Release notes

Fee Policy changes

The default fee for low-priority transactions is lowered from 0.0005 BTC
(for each 1,000 bytes in the transaction; an average transaction is
about 500 bytes) to 0.0001 BTC.

Payments (transaction outputs) of 0.543 times the minimum relay fee
(0.00005430 BTC) are now considered ‘non-standard’, because storing them
costs the network more than they are worth and spending them will usually
cost their owner more in transaction fees than they are worth.

Non-standard transactions are not relayed across the network, are not included
in blocks by most miners, and will not show up in your wallet until they are
included in a block.

The default fee policy can be overridden using the -mintxfee and -minrelaytxfee
command-line options, but note that we intend to replace the hard-coded fees
with code that automatically calculates and suggests appropriate fees in the
0.9 release and note that if you set a fee policy significantly different from
the rest of the network your transactions may never confirm.

Bitcoin-Qt changes

	New icon and splash screen

	Improve reporting of synchronization process

	Remove hardcoded fee recommendations

	Improve metadata of executable on MacOSX and Windows

	Move export button to individual tabs instead of toolbar

	Add “send coins” command to context menu in address book

	Add “copy txid” command to copy transaction IDs from transaction overview

	Save & restore window size and position when showing & hiding window

	New translations: Arabic (ar), Bosnian (bs), Catalan (ca), Welsh (cy),
Esperanto (eo), Interlingua (la), Latvian (lv) and many improvements
to current translations

MacOSX:

	OSX support for click-to-pay (bitcoin:) links

	Fix GUI disappearing problem on MacOSX (issue #1522)

Linux/Unix:

	Copy addresses to middle-mouse-button clipboard

Command-line options

	-walletnotify will call a command on receiving transactions that affect the wallet.

	-alertnotify will call a command on receiving an alert from the network.

	-par now takes a negative number, to leave a certain amount of cores free.

JSON-RPC API changes

	fixed a getblocktemplate bug that caused excessive CPU creating blocks.

	listunspent now lists account and address information.

	getinfo now also returns the time adjustment estimated from your peers.

	getpeerinfo now returns bytessent, bytesrecv and syncnode.

	gettxoutsetinfo returns statistics about the unspent transaction output database.

	gettxout returns information about a specific unspent transaction output.

Networking changes

	Significant changes to the networking code, reducing latency and memory consumption.

	Avoid initial block download stalling.

	Remove IRC seeding support.

	Performance tweaks.

	Added testnet DNS seeds.

Wallet compatibility/rescuing

	Cases where wallets cannot be opened in another version/installation should be reduced.

	-salvagewallet now works for encrypted wallets.

Known Bugs

	Entering the ‘getblocktemplate’ or ‘getwork’ RPC commands into the Bitcoin-Qt debug
console will cause Bitcoin-Qt to crash. Run Bitcoin-Qt with the -server command-line
option to workaround.

Thanks to everybody who contributed to the 0.8.2 release!

APerson241
Andrew Poelstra
Calvin Owens
Chuck LeDuc Díaz
Colin Dean
David Griffith
David Serrano
Eric Lombrozo
Gavin Andresen
Gregory Maxwell
Jeff Garzik
Jonas Schnelli
Larry Gilbert
Luke Dashjr
Matt Corallo
Michael Ford
Mike Hearn
Patrick Brown
Peter Todd
Philip Kaufmann
Pieter Wuille
Richard Schwab
Roman Mindalev
Scott Howard
Tariq Bashir
Warren Togami
Wladimir J. van der Laan
freewil
gladoscc
kjj2
mb300sd
super3

 <no title>

 Changes:

	Fixed a wallet.dat compatibility problem if you downgraded from 0.3.17 and then upgraded again

	IsStandard() check to only include known transaction types in blocks

	Jgarzik’s optimisation to speed up the initial block download a little

The main addition in this release is the Accounts-Based JSON-RPC commands that Gavin’s been working on (more details at http://www.bitcoin.org/smf/index.php?topic=1886.0).

	getaccountaddress

	sendfrom

	move

	getbalance

	listtransactions

 <no title>

 Version 0.3.17 is now available.

Changes:

	new getwork, thanks m0mchil

	added transaction fee setting in UI options menu

	free transaction limits

	sendtoaddress returns transaction id instead of “sent”

	getaccountaddress

 <no title>

 bitcoind and Bitcoin-Qt version 0.5.5 are now available for download at:
Windows: installer | zip (sig)
Source: tar.gz
bitcoind and Bitcoin-Qt version 0.6.0.7 are also tagged in git, but it is recommended to upgrade to 0.6.1.

These are bugfix-only releases.

Please report bugs by replying to this forum thread. Note that the 0.4.x wxBitcoin GUI client is no longer maintained nor supported. If someone would like to step up to maintain this, they should contact Luke-Jr.

BUG FIXES

Version 0.6.0 allowed importing invalid “private keys”, which would be unspendable; 0.6.0.7 will now verify the private key is valid, and refuse to import an invalid one
Verify status of encrypt/decrypt calls to detect failed padding
Check blocks for duplicate transactions earlier. Fixes #1167
Upgrade Windows builds to OpenSSL 1.0.1b
Set label when selecting an address that already has a label. Fixes #1080 (Bitcoin-Qt)
JSON-RPC listtransactions’s from/count handling is now fixed
Optimize and fix multithreaded access, when checking whether we already know about transactions
Fix potential networking deadlock
Proper support for Growl 1.3 notifications
Display an error, rather than crashing, if encoding a QR Code failed (0.6.0.7)
Don’t erroneously set “Display addresses” for users who haven’t explicitly enabled it (Bitcoin-Qt)
Some non-ASCII input in JSON-RPC expecting hexadecimal may have been misinterpreted rather than rejected
Missing error condition checking added
Do not show green tick unless all known blocks are downloaded. Fixes #921 (Bitcoin-Qt)
Increase time ago of last block for “up to date” status from 30 to 90 minutes
Show a message box when runaway exception happens (Bitcoin-Qt)
Use a messagebox to display the error when -server is provided without providing a rpc password
Show error message instead of exception crash when unable to bind RPC port (Bitcoin-Qt)
Correct sign message bitcoin address tooltip. Fixes #1050 (Bitcoin-Qt)
Removed “(no label)” from QR Code dialog titlebar if we have no label (0.6.0.7)
Removed an ugly line break in tooltip for mature transactions (0.6.0.7)
Add missing tooltip and key shortcut in settings dialog (part of #1088) (Bitcoin-Qt)
Work around issue in boost::program_options that prevents from compiling in clang
Fixed bugs occurring only on platforms with unsigned characters (such as ARM).
Rename make_windows_icon.py to .sh as it is a shell script. Fixes #1099 (Bitcoin-Qt)
Various trivial internal corrections to types used for counting/size loops and warnings

 <no title>

 Download URL: https://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.22/

This is largely a bugfix and TX fee schedule release. We also hope to make 0.3.23 a quick release, to fix problems that the network has seen due to explosive growth in the past week.

Notable changes:

	Client will accept and relay TX’s with 0.0005 BTC fee schedule (users still pay 0.01 BTC per kb, until next version)

	Non-standard transactions accepted on testnet

	Source code tree reorganized (prep for autotools build)

	Remove “Generate Coins” option from GUI, and remove 4way SSE miner. Internal reference CPU miner remains available, but users are directed to external miners for best hash production.

	IRC is overflowing. Client now bootstraps to channels #bitcoin00 - #bitcoin99

	DNS names now may be used with -addnode, -connect (requires -dns to enable)

RPC changes:

	‘listtransactions’ adds ‘from’ param, for range queries

	‘move’ may take account balances negative

	‘settxfee’ added, to manually set TX fee

 How to Upgrade

 Bitcoin-Qt version 0.8.0 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.0/

This is a major release designed to improve performance and handle the
increasing volume of transactions on the network.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

The first time you run after the upgrade a re-indexing process will be
started that will take anywhere from 30 minutes to several hours,
depending on the speed of your machine.

Incompatible Changes

This release no longer maintains a full index of historical transaction ids
by default, so looking up an arbitrary transaction using the getrawtransaction
RPC call will not work. If you need that functionality, you must run once
with -txindex=1 -reindex=1 to rebuild block-chain indices (see below for more
details).

Improvements

Mac and Windows binaries are signed with certificates owned by the Bitcoin
Foundation, to be compatible with the new security features in OSX 10.8 and
Windows 8.

LevelDB, a fast, open-source, non-relational database from Google, is
now used to store transaction and block indices. LevelDB works much better
on machines with slow I/O and is faster in general. Berkeley DB is now only
used for the wallet.dat file (public and private wallet keys and transactions
relevant to you).

Pieter Wuille implemented many optimizations to the way transactions are
verified, so a running, synchronized node uses less working memory and does
much less I/O. He also implemented parallel signature checking, so if you
have a multi-CPU machine all CPUs will be used to verify transactions.

New Features

“Bloom filter” support in the network protocol for sending only relevant transactions to
lightweight clients.

contrib/verifysfbinaries is a shell-script to verify that the binary downloads
at sourceforge have not been tampered with. If you are able, you can help make
everybody’s downloads more secure by running this occasionally to check PGP
signatures against download file checksums.

contrib/spendfrom is a python-language command-line utility that demonstrates
how to use the “raw transactions” JSON-RPC api to send coins received from particular
addresses (also known as “coin control”).

New/changed settings (command-line or bitcoin.conf file)

dbcache : controls LevelDB memory usage.

par : controls how many threads to use to validate transactions. Defaults to the number
of CPUs on your machine, use -par=1 to limit to a single CPU.

txindex : maintains an extra index of old, spent transaction ids so they will be found
by the getrawtransaction JSON-RPC method.

reindex : rebuild block and transaction indices from the downloaded block data.

New JSON-RPC API Features

lockunspent / listlockunspent allow locking transaction outputs for a period of time so
they will not be spent by other processes that might be accessing the same wallet.

addnode / getaddednodeinfo methods, to connect to specific peers without restarting.

importprivkey now takes an optional boolean parameter (default true) to control whether
or not to rescan the blockchain for transactions after importing a new private key.

Important Bug Fixes

Privacy leak: the position of the “change” output in most transactions was not being
properly randomized, making network analysis of the transaction graph to identify
users’ wallets easier.

Zero-confirmation transaction vulnerability: accepting zero-confirmation transactions
(transactions that have not yet been included in a block) from somebody you do not
trust is still not recommended, because there will always be ways for attackers to
double-spend zero-confirmation transactions. However, this release includes a bug
fix that makes it a little bit more difficult for attackers to double-spend a
certain type (“lockTime in the future”) of zero-confirmation transaction.

Dependency Changes

Qt 4.8.3 (compiling against older versions of Qt 4 should continue to work)

Thanks to everybody who contributed to this release:

Alexander Kjeldaas
Andrey Alekseenko
Arnav Singh
Christian von Roques
Eric Lombrozo
Forrest Voight
Gavin Andresen
Gregory Maxwell
Jeff Garzik
Luke Dashjr
Matt Corallo
Mike Cassano
Mike Hearn
Peter Todd
Philip Kaufmann
Pieter Wuille
Richard Schwab
Robert Backhaus
Rune K. Svendsen
Sergio Demian Lerner
Wladimir J. van der Laan
burger2
default
fanquake
grimd34th
justmoon
redshark1802
tucenaber
xanatos

 <no title>

 There’s more work to do on DoS, but I’m doing a quick build of what I have so far in case it’s needed, before venturing into more complex ideas. The build for this is version 0.3.19.

	Added some DoS controls
As Gavin and I have said clearly before, the software is not at all resistant to DoS attack. This is one improvement, but there are still more ways to attack than I can count.

I’m leaving the -limitfreerelay part as a switch for now and it’s there if you need it.

	Removed “safe mode” alerts
“safe mode” alerts was a temporary measure after the 0.3.9 overflow bug. We can say all we want that users can just run with “-disablesafemode”, but it’s better just not to have it for the sake of appearances. It was never intended as a long term feature. Safe mode can still be triggered by seeing a longer (greater total PoW) invalid block chain.

 <no title>

	paytxfee switch is now per KB, so it adds the correct fee for large transactions

	sending avoids using coins with less than 6 confirmations if it can

	BitcoinMiner processes transactions in priority order based on age of dependencies

	make sure generation doesn’t start before block 74000 downloaded

	bugfixes by Dean Gores

	testnet, keypoololdest and paytxfee added to getinfo

 Upgrading and downgrading

 Bitcoin Core version 0.10.2 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.10.2/

This is a new minor version release, bringing minor bug fixes and translation
updates. It is recommended to upgrade to this version.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility.

Notable changes

This fixes a serious problem on Windows with data directories that have non-ASCII
characters (https://github.com/bitcoin/bitcoin/issues/6078).

For other platforms there are no notable changes.

For the notable changes in 0.10, refer to the release notes
at https://github.com/bitcoin/bitcoin/blob/v0.10.0/doc/release-notes.md

0.10.2 Change log

Detailed release notes follow. This overview includes changes that affect external
behavior, not code moves, refactors or string updates.

Wallet:

	824c011 fix boost::get usage with boost 1.58

Miscellaneous:

	da65606 Avoid crash on start in TestBlockValidity with gen=1.

	424ae66 don’t imbue boost::filesystem::path with locale “C” on windows (fixes #6078)

Credits

Thanks to everyone who directly contributed to this release:

	Cory Fields

	Gregory Maxwell

	Jonas Schnelli

	Wladimir J. van der Laan

And all those who contributed additional code review and/or security research:

	dexX7

	Pieter Wuille

	vayvanne

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Never released

 How to Upgrade

 Bitcoin Core version 0.9.1 is now available from:

https://bitcoin.org/bin/0.9.1/

This is a security update. It is recommended to upgrade to this release
as soon as possible.

It is especially important to upgrade if you currently have version
0.9.0 installed and are using the graphical interface OR you are using
bitcoind from any pre-0.9.1 version, and have enabled SSL for RPC and
have configured allowip to allow rpc connections from potentially
hostile hosts.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.1 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

0.9.1 Release notes

No code changes were made between 0.9.0 and 0.9.1. Only the dependencies were changed.

	Upgrade OpenSSL to 1.0.1g. This release fixes the following vulnerabilities which can
affect the Bitcoin Core software:
	CVE-2014-0160 (“heartbleed”)
A missing bounds check in the handling of the TLS heartbeat extension can
be used to reveal up to 64k of memory to a connected client or server.

	CVE-2014-0076
The Montgomery ladder implementation in OpenSSL does not ensure that
certain swap operations have a constant-time behavior, which makes it
easier for local users to obtain ECDSA nonces via a FLUSH+RELOAD cache
side-channel attack.

	Add statically built executables to Linux build

Credits

Credits go to the OpenSSL team for fixing the vulnerabilities quickly.

 <no title>

 Bitcoin-Qt version 0.8.3 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.3/

This is a maintenance release to fix a denial-of-service attack that
can cause nodes to crash.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

0.8.3 Release notes

Truncate over-size messages to prevent a memory exhaustion attack.

Fix a regression that causes excessive re-writing of the ‘peers.dat’ file.

Thanks to Peter Todd for responsibly disclosing the vulnerability
(CVE-2013-4627) and creating a fix.

 How to Upgrade

 Bitcoin-Qt version 0.8.4 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.4/

This is a maintenance release to fix a critical bug and three
security issues; we urge all users to upgrade.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.4 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

0.8.4 Release notes

Security issues

An attacker could send a series of messages that resulted in
an integer division-by-zero error in the Bloom Filter handling
code, causing the Bitcoin-Qt or bitcoind process to crash.
Bloom filters were introduced with version 0.8, so versions 0.8.0
through 0.8.3 are vulnerable to this critical denial-of-service attack.

A constant-time algorithm is now used to check RPC password
guess attempts; fixes https://github.com/bitcoin/bitcoin/issues/2838
(CVE-2013-4165)

Implement a better fix for the fill-memory-with-orphan-transactions
attack that was fixed in 0.8.3. See
https://bitslog.wordpress.com/2013/07/18/buggy-cve-2013-4627-patch-open-new-vectors-of-attack/
for a description of the weaknesses of the previous fix.
(CVE-2013-4627)

Bugs fixed

Fix multi-block reorg transaction resurrection.

Fix non-standard disconnected transactions causing mempool orphans.
This bug could cause nodes running with the -debug flag to crash.

OSX: use ‘FD_FULLSYNC’ with LevelDB, which will (hopefully!)
prevent the database corruption issues many people have
experienced on OSX.

Linux: clicking on bitcoin: links was broken if you were using
a Gnome-based desktop.

Fix a hang-at-shutdown bug that only affects users that compile
their own version of Bitcoin against Boost versions 1.50-1.52.

Other changes

Checkpoint at block 250,000 to speed up initial block downloads
and make the progress indicator when downloading more accurate.

Thanks to everybody who contributed to the 0.8.4 releases!

Pieter Wuille
Warren Togami
Patrick Strateman
pakt
Gregory Maxwell
Sergio Demian Lerner
grayleonard
Cory Fields
Matt Corallo
Gavin Andresen

 <no title>

 Version 0.3.12 is now available.

Features:

	json-rpc errors return a more standard error object. (thanks to Gavin Andresen)

	json-rpc command line returns exit codes.

	json-rpc “backupwallet” command.

	Recovers and continues if an exception is caused by a message you received. Other nodes shouldn’t be able to cause an exception, and it hasn’t happened before, but if a way is found to cause an exception, this would keep it from being used to stop network nodes.

If you have json-rpc code that checks the contents of the error string, you need to change it to expect error objects of the form {“code”:,”message”:}, which is the standard. See this thread:
http://www.bitcoin.org/smf/index.php?topic=969.0

 How to Upgrade

 Bitcoin Core version 0.9.4 is now available from:

https://bitcoin.org/bin/0.9.4/

This is a new minor version release, bringing only bug fixes and updated
translations. Upgrading to this release is recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

OpenSSL Warning

OpenSSL 1.0.0p / 1.0.1k was recently released and is being pushed out by
various operating system maintainers. Review by Gregory Maxwell determined that
this update is incompatible with the Bitcoin system and could lead to consensus
forks.

Bitcoin Core released binaries from https://bitcoin.org are unaffected,
as are any built with the gitian deterministic build system.

However, if you are running either

	The Ubuntu PPA from https://launchpad.net/~bitcoin/+archive/ubuntu/bitcoin

	A third-party or self-compiled Bitcoin Core

upgrade to Bitcoin Core 0.9.4, which includes a workaround, before updating
OpenSSL.

The incompatibility is due to the OpenSSL update changing the
behavior of ECDSA validation to reject any signature which is
not encoded in a very rigid manner. This was a result of
OpenSSL’s change for CVE-2014-8275 “Certificate fingerprints
can be modified”.

We are specifically aware of potential hard-forks due to signature
encoding handling and had been hoping to close them via BIP62 in 0.10.
BIP62’s purpose is to improve transaction malleability handling and
as a side effect rigidly defines the encoding for signatures, but the
overall scope of BIP62 has made it take longer than we’d like to
deploy.

0.9.4 changelog

Validation:

	b8e81b7 consensus: guard against openssl’s new strict DER checks

	60c51f1 fail immediately on an empty signature

	037bfef Improve robustness of DER recoding code

Command-line options:

	cd5164a Make -proxy set all network types, avoiding a connect leak.

P2P:

	bb424e4 Limit the number of new addressses to accumulate

RPC:

	0a94661 Disable SSLv3 (in favor of TLS) for the RPC client and server.

Build system:

	f047dfa gitian: openssl-1.0.1i.tar.gz -> openssl-1.0.1k.tar.gz

	5b9f78d build: Fix OSX build when using Homebrew and qt5

	ffab1dd Keep symlinks when copying into .app bundle

	613247f osx: fix signing to make Gatekeeper happy (again)

Miscellaneous:

	25b49b5 Refactor -alertnotify code

	2743529 doc: Add instructions for consistent Mac OS X build names

Credits

Thanks to who contributed to this release, at least:

	Cory Fields

	Gavin Andresen

	Gregory Maxwell

	Jeff Garzik

	Luke Dashjr

	Matt Corallo

	Pieter Wuille

	Saivann

	Sergio Demian Lerner

	Wladimir J. van der Laan

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Jack Grigg (5):
Add –disable-tests flag to zcutils/build.sh
Correctly set CNoteData::witnessHeight when decrementing witness caches
Copy over CNoteData::witnessHeight when updating wallet tx
Add code comments about CNoteData::witnessHeight
Clear witnessHeight and nWitnessCacheSize in ClearNoteWitnessCache

Jay Graber (4):
Document z_sendmany error code messages in payment-api.md
s/Bitcoin/Zcash in JSONRPCError
Change format of z_sendmany error code documentation.
Release-notes.py script to generate release notes and add contributors to authors.md

Sean Bowe (7):
Regression test for constraint system violation.
Improve accuracy of constraint system violation diagnostics.
Add tests for witness element and tree last methods. Strengthen testing by inserting a different commitment into the tree at each step.
Initialize after profiling messages are suppressed.
Process verification keys to perform online verification.
Add test that last and element will throw exception when the tree is blank.
Anchors and nullifiers should always be inherited from the parent cache.

Simon (8):
Closes #1833. Format currency amounts in z_sendmany error message.
Closes #1680, temporary fix for rpc deadlock inherited from upstream.
Set default minrelaytxfee to 1000 zatoshis to match upstream.
Mempool will accept tx with joinsplits and the default z_sendmany fee.
Track the correct change witness across chained joinsplits
Closes #1854. z_sendmany selects more utxos to avoid dust change output.
Partial revert of bd87e8c: file release-notes-1.0.2.md to 343b0d6.
Fix threading issue when initializing public params.

ayleph (1):
Correct spelling error in z_sendmany error output

 <no title>

 Daira Hopwood (1):
zkSNARK: Add constraint that the total value in a JoinSplit is a 64-bit integer.

Nathan Wilcox (4):
Add a depends description for googletest.
Add a zcash-gtest binary to our build with a single tautological test.
Add coverage support scoped to only the zcash-gtest run; invoke with make zcash-cov; make cov is a superset.
Add googlemock 1.7.0 dependency.

Sean Bowe (49):
Add serialization for primitive boost::optional.
New implementation of incremental merkle tree
Integrate new incremental merkle tree implementation into consensus.
Test old tree along with new tree as much as possible.
Deprecate the old tree and remove old tree tests from the test suite.
Initialize curve/field parameters in case another test hasn’t done so.
Improve well-formedness checks and add additional serialization/deserialization tests.
Add more well-formedness checks/tests to tree.
Make appending algorithm more succinct.
Move incremental merkle tree tests to zcash-gtest.
NoteEncryption implementation and integration, removal of ECIES and crypto++ dependencies.
Move NoteEncryption tests to gtest suite.
Add additional tests for ephemeral key behavior.
Clarify the usage of decryption API.
Check exception has specific string message.
Small nit fixes
Run zcash-gtest in make check and fix performance tests.
Perform zerocash tests as part of full-test-suite, in preparation for removal of zerocash waterfall.
Distinguish the failure cases of wfcheck in tree.
Change ciphertext length to match protocol spec, and refactor the use of constants.
Initialize libsodium in the gtest suite.
Introduce new libzcash Zcash protocol API and crypto constructions surrounding the zkSNARK circuit.
zkSNARK: Foundations of circuit design and verification logic.
zkSNARK: Add “zero” constant variable.
zkSNARK: Enforce spend-authority of input notes.
zkSNARK: Enforce disclosure of input note nullifiers
zkSNARK: Authenticate h_sig with a_sk
zkSNARK: Enforce that new output notes have unique rho to prevent faerie gold attack.
zkSNARK: Enforce disclosure of commitments to output notes.
zkSNARK: Ensure that values balance correctly.
zkSNARK: Witness commitments to input notes.
zkSNARK: Enforce merkle authentication path from nonzero-valued public inputs to root.
libzcash: Add tests for API
Remove scriptPubKey/scriptSig from CPourTx, and add randomSeed.
Transplant of libzcash.
Added public zkSNARK parameter generation utility.
Stop testing old tree against new tree.
Remove nearly all of libzerocash.
Update public zkSNARK parameters for new circuit.
Fix performance measurements due to modified transaction structure.
Remove the zerocash tests from the full test suite.
Protect-style joinsplits should anchor to the latest root for now, until #604 is resolved.
Use inheritance for PRF gadgets.
Rename ZCASH_ constants to ZC_.
Rename hmac -> mac in circuit.
Note values should be little-endian byte order.
Update zkSNARK proving/verifying keys.
Add h_sig test vectors.
Change testnet network magics.

 <no title>

 ITH4Coinomia (2):
Update security-warnings.md
Update init.cpp

S. Matthew English (1):
enforcing consistency ‘tor’ to ‘Tor’

Sean Bowe (1):
Write R1CS output to file in GenerateParams.

Simon (4):
Fixes #1762 segfault when miner is interrupted.
Fixes #1779 so that sending to multiple zaddrs no longer fails.
Add GenIdentity, an identity function for MappedShuffle.
Add transaction size and zaddr output limit checks to z_sendmany.

 <no title>

 Bitcoin Error Log (1):
Edit for grammar: “block chain”

Christian von Roques (1):
bash-completion: Adapt for 0.12 and 0.13

Jack Grigg (32):
Add getlocalsolps and getnetworksolps RPC calls, show them in getmininginfo
Add benchmark for attempting decryption of notes
Add benchmark for incrementing note witnesses
Add -metricsui flag to toggle between persistent screen and rolling metrics
Add -metricsrefreshtime option
Only show metrics by default if stdout is a TTY
Document metrics screen options
Clarify that metrics options are only useful without -daemon and -printtoconsole
Increase length of metrics divider
Write witness caches when writing the best block
Apply miniupnpc patches to enable compilation on Solaris 11
Add an upstream miniupnpc patch revision
Address review comments, tweak strings
Change function names to not clash with Bitcoin, apply to correct binaries
Add bash completion files to Debian package
Always bash-complete the default account
Add Zcash RPC commands to CLI argument completion
Document behaviour of CWallet::SetBestChain
Fix indentation
Generate JS for trydecryptnotes, make number of addresses a variable
Add JS to second block to ensure witnesses are incremented
Skip JoinSplit verification before the last checkpoint
Add a reindex test that fails because of a bug in decrementing witness caches
Make the test pass by fixing the bug!
Only check cache validity for witnesses being incremented or decremented
Fix bug in wallet tests
Extract block-generation wallet test code into a function
Rewrite reindex test to check beyond the max witness cache size
Fix bug in IncrementNoteWitness()
Update payment API docs to recommend -rescan for fixing witness errors
Update version to 1.0.4
Update man pages

Jay Graber (2):
Replace bitcoin with zcash in rpcprotocol.cpp
Gather release notes from previous release to HEAD

Jeffrey Walton (1):
Add porter dev overrides for CC, CXX, MAKE, BUILD, HOST

Scott (1):
Metrics - Don’t exclaim unless > 1

Sean Bowe (8):
Isolate verification to a ProofVerifier context object that allows verification behavior to be tuned by the caller.
Regression test.
Ensure cache contains valid entry when anchor is popped.
Ensure ProofVerifier cannot be accidentally copied.
Rename Dummy to Disabled.
Add more tests for ProofVerifier.
ASSERT_TRUE -> ASSERT_FALSE
Check that E’ points are actually in G2 by ensuring they are of order r.

Simon Liu (8):
Fix stale comment referencing upstream block interval
Add checkpoint at block height 15000
Closes #1857. Fixes bug where tx spending only notes had priority of 0.
Closes #1901. Increase default settings for the max block size when mining and the amount of space available for priority transactions.
Closes #1903. Add fee parameter to z_sendmany.
Fixes #1823. Witness anchors for input notes no longer cross block boundaries.
Increase timeout as laptops on battery power have cpu throttling.
WitnessAnchorData only needs to store one witness per JSOutPoint.

lpescher (3):
Make command line option to show all debugging consistent with similar options
Update documentation to match the #4219 change
Update help message to match the #4219 change

 <no title>

 Daira Hopwood (2):
.clang-format: change standard to C++11
Bucket -> note.

Jack Grigg (4):
Collect all permutations of final solutions
Add test case that requires the fix
Reinstate previous testnet adjustment behaviour
Hardfork to the previous testnet difficulty adjustment behaviour at block 43400

Nathan Wilcox (1):
A script to remove “unofficial” tags from a remote, such as github.

Sean Bowe (36):
Flush to disk more consistently by accounting memory usage of serials/anchors in cache.
Always check valid joinsplits during performance tests, and avoid recomputing them every time we change the circuit.
Remove the rest of libzerocash.
Update tests with cache usage computations
Reorder initialization routines to ensure verifying key log messages appear in debug.log.
Remove zerocash tests from full-test-suite.
Rename samplepour to samplejoinsplit
Update libsnark to our fork.
Initialize libsodium in this routine, which is now necessary because libsnark uses its PRNG.
Pass our constraint system to libsnark, so that it doesn’t need to (de)serialize it in the proving key.
Rename CPourTx to JSDescription.
Rename vpour to vjoinsplit.
Rename JSDescription’s serials to nullifiers.
Test fixes.
Rename GetPourValueIn to GetJoinSplitValueIn
Rename HavePourRequirements to HaveJoinSplitRequirements.
Rename GetSerial to GetNullifier.
Renaming SetSerial to SetNullifier.
Rename CSerialsMap to CNullifiersMap.
Rename mapSerials to mapNullifiers.
Rename some usage of ‘pour’.
Rename more usage of serial.
Rename cacheSerials to cacheNullifiers and fix tests.
Rename CSerialsCacheEntry.
Change encryptedbucket1 to encryptednote1.
Rename pour RPC tests
Fix tests
Remove more usage of serial.
Fixes for indentation and local variable names.
Change serial to nf in txdb.
Rename pour in RPC tests.
Remove the constraint system from the alpha proving key.
Introduce zcsamplejoinsplit for creating a raw joinsplit description, and use it to construct the joinsplit for the performance tests that verify joinsplits.
Bump the (minimum) protocol version to avoid invoking legacy behavior from upstream.
Remove more from libsnark, and fix potential remote-DoS.
Add test for non-intuitive merkle tree gadget witnessing behavior.

bitcartel (15):
Disable USE_ASM when building libsnark (issue 932).
Add getblocksubsidy RPC command to return the block reward for a given block, taking into account the mining slow start.
Replace index with height in help message for getblocksubsidy RPC call.
Narrow scope of lock.
Add founders reward to output.
Use new public/private key pairs for alert system.
Add sendalert.cpp to repo.
Fixes to integrate sendalert.cpp. Add sendalert.cpp to build process. Add alertkeys.h as a placeholder for private keys.
Disable QT alert message.
Update comments.
Update alert ID start value and URL in comment.
Update alert protocol version comment.
Update URL for zcash alert IDs.
Remove QT alert message box.
New alert test data generated for new alert key pair. Added test fixture to create new test data. Added instructions for developer.
Update tor.md for Zcash

Taylor Hornby (17):
WIP: Add mock test coverage of CheckTransaction
Split JoinSplit proof verification out of CheckTransaction.
More testing of CheckTransaction
Test non-canonical ed25519 signature check
Rename zerocash to zcash in some places.
Remove references to libzerocash in .gitignore
Rename qa/zerocash to qa/zcash in Makefile.am
Rename zerocash_packages to zcash_packages in packages.mk
Add security warnings doc with warning about side channels.
Add another security warning
Add the results of #784 to security warnings.
Fix bad_txns_oversize test for increased block size.
Note that the actual secret spending key may be leaked.
Mention physical access / close proximity
Remove in-band error signalling from SignatureHash, fixing the SIGHASH_SINGLE bug.
Fix the tests that the SIGHASH_SINGLE bugfix breaks.
Remove insecurely-downloaded dependencies that we don’t currently use.

aniemerg (1):
Update GetDifficulty() to use consensus.powLimit from consensus parameters. Fixes #1032.

 <no title>

 Daira Hopwood (1):
README.md: simplify the title, drop “Core”

Jack Grigg (23):
Make Equihash solvers cancellable
Add tests that exercise the cancellation code branches
Fix segfault by indirectly monitoring chainActive.Tip(), locking on mutex
Move initialisations to simplify cancelled checks
Use std::shared_ptr to deallocate partialSolns automatically
Equihash: Pass each obtained solution to a callback for immediate checking
Remove hardfork from special testnet difficulty rules
Fix bug in ‘generate’ RPC method that caused it to fail with high probability
Add thread parameter to solveequihash benchmark
Eliminate some of the duplicates caused by truncating indices
Use fixed-size array in IsProbablyDuplicate to avoid stack protector warning
Eliminate probably duplicates in final round
Simplify IsProbablyDuplicate()
Add missing assert
Simplify optional parameters
Fix previous commit
Remove the assumption that n/(k+1) is a multiple of 8.
Add Equihash support for n = 200, k = 9
Add test showing bug in IsProbablyDuplicate()
Fix bug in IsProbablyDuplicate()
Change Equihash parameters to n = 200, k = 9 (about 563-700 MiB)
Update tests to account for new Equihash parameters
Ignore duplicate entries after partial recreation

Simon (21):
Inform user that zcraw... rpc calls are being deprecated.
Add GetTxid() which returns a non-malleable txid.
Update genesis blocks.
Update precomputed equihash solutions used in test.
Update block and tx data used in bloom filter tests.
Updated test data for script_tests by uncommenting UPDATE_JSON_TESTS flag.
Rename GetHash() method to GetSerializeHash().
Replace calls to GetHash() with GetTxid() for transaction objects.
Set nLockTime in CreateNewBlock() so coinbase txs do not have the same txid. Update test data in miner_tests.
Refactor GetTxid() into UpdateTxid() to match coding style of hash member variable.
Revert “Set nLockTime in CreateNewBlock() so coinbase txs do not have the same txid.”
Fix issue where a coinbase tx should have it’s sigscript hashed to avoid duplicate txids, as discussed in BIP34 and BIP30.
Update genesis block hashes and test data.
Make txid const.
Update deprecation message for zcraw api.
Fix comment.
Update comment.
Extend try catch block around calls to libsnark, per discussion in #1126.
Remove GetSerializeHash() method.
Use -O1 opimitization flag when building libzcash. Continuation of #1064 and related to #1168.
Add test for non-malleable txids. To run just this test: ./zcash-gtest –gtest_filter=”txid_tests*“

Taylor Hornby (8):
Make the –enable-hardening flag explicit.
Enable -O1 for better FORTIFY_SOURCE protections.
Add checksec.sh from http://www.trapkit.de/tools/checksec.html
Add tests for security hardening features
Pull in upstream’s make check-security, based on upstream PR #6854 and #7424.
Make security options in configure.ac fail if unavailable.
Put hardened stuff in libzcash CPPFLAGS.
Add more commands to run unit tests under valgrind.

 <no title>

 Daira Hopwood (1):
Update steps after D

Jack Grigg (43):
Undo debugging change from 5be6abbf84c46e8fc4c8ef9be987a44de22d0d05
Output Equihash solution in RPC results as a hex string
Add optional bool to disable computation of proof in JSDescription constructor
Add wallet method for finding spendable notes in a CTransaction
Store mapping between notes and PaymentAddresses in CWalletTx
Keep track of spent notes, and detect and report conflicts
Create mapping from nullifiers to received notes
Add caching of incremental witnesses for spendable notes
Update cached incremental witnesses when the active block chain tip changes
Test solution output of blockToJSON()
Pass ZCIncrementalMerkleTree to wallet to prevent race conditions
Remove GetNoteDecryptors(), lock inside FindMyNotes() instead
Replace vAnchorCache with a cache size counter
mapNullifiers -> mapNullifiersToNotes for clarity
Set witness cache size equal to coinbase maturity duration
Add transactions to wallet if we spend notes in them
Add test for GetNoteDecryptor()
Keep any existing cached witnesses when updating transactions
Changes after review
Add test showing that the witness cache isn’t being serialised
Fix the failing test!
Increase coverage of GetNoteDecryptor()
Add coverage of the assertion inside GetNoteWitnesses()
Separate concepts of block difficulty and network difficulty in RPC
Add test comparing GetDifficulty() with GetNetworkDifficulty()
Remove mainnet DNS seeds, set checkpoint to genesis
Fix failing test
Adjust from average difficulty instead of previous difficulty
Remove testnet-only difficulty rules
Add comments explaining changed semantics of pow_tests
Expand bounds on difficulty adjustment
Remove accidental double-semicolon (harmless but odd)
Add test of difficulty averaging
Simplify difficulty averaging code
Restrict powLimit due to difficulty averaging
Regenerate genesis blocks for new powLimits
Update tests for new genesis blocks
Adjust test to avoid spurious failures
Remove unnecessary method
Adjust test to account for integer division precision loss
Refactor wallet note code for testing
Add tests for refactored wallet code
Remove .z# suffix from version

Lars-Magnus Skog (1):
changed module name from “bitcoin” to “Zcash” in FormatException()

Sean Bowe (7):
Deallocate the public parameters during Shutdown.
Update libsnark again.
Fix CheckTransaction bugs.
Remove TODO 808.
Fix transaction test in test_bitcoin.
Change version to 1.0.0. This is just a beta.
Update pchMessageStart and add testnet DNS boostrapper.

Simon (91):
Implemented RPC calls z_importkey, z_exportkey, z_getnewaddress. Modified RPC calls dumpwallet and importwallet to include spending keys.
Add z_importwallet and z_exportwallet to handle keys for both taddr and zaddr. Restore behaviour of dumpwallet and importwallet to only handle taddr.
Implemented z_listaddresses to return all the zaddr in the wallet.
Add gtest to cover new methods in: CWallet - GenerateNewZKey() - AddZKey() - LoadZKey() - LoadZKeyMetadata() CWalletDB - WriteZKey()
Don’t mark wallet as dirty if key already exists. Fix incorrect method name used in error message.
Added wallet rpc tests to cover: z_importwallet, z_exportwallet z_importkey, z_exportkey z_listaddresses
Add test coverage for RPC call z_getnewaddress.
Fix comment.
Remove one line of dead code.
Add “zkey” to list of key types (used by the wallet to decide whether or not it can be recovered if it detects bad records).
Fix comments.
Rename methods to avoid using prefix of _ underscore which is reserved. Added logging of explicit exception rather than a catch all. Removed redundant spending key check. Updated user facing help message.
Fixes #1122 where json_spirit could stack overflow because there was no maximum limit set on the number of nested compound elements.
Throw a domain error as json_spirit is a third-party library.
Closes #1315. RPC getblocksubsidy height parameter is now optional and a test has been added to verify parameter input and results.
Remove #1144 from transaction.h.
Remove #1144 from transaction.cpp by reverting back to commit 942bc46.
Remove #1144 from bloom_tests by reverting to commit 5012190.
Remove #1144 from input data of script_tests.
Update txid gtest to verify #1144 has been removed: GetTxid() and GetHash() return the same result.
Refactor: replace calls to GetTxid() with GetHash()
Remove GetTxid() from CTransaction and update test_txid
Replace GetTxid() with GetHash() after rebase on latest.
Add async RPC queue and operation classes. Add z_getoperationstatus RPC command. Add z_sendmany RPC command (dummy implementation, does not send actual coins).
Add prefix to async operation id so it is easier to manage on cli.
Add config option ‘rpcasyncthreads’ to specify number of async rpc workers. Default is 1.
Add public field ‘memo’ to JSOutput to enable creation of notes with custom memos.
Implement z_sendmany RPC call.
Update find_unspent_notes() as mapNoteAddrs_t has been replaced by mapNoteData_t.
z_sendmany from a taddr now routes change to a new address instead of back to the sender’s taddr,
Successful result of z_sendmany returns txid so it doesn’t need to return raw hex.
Add public method to get state as a human readable string from an AsyncRPCOperation.
Add public method to AsycnRPCQueue to retrieve all the known operation ids.
Implement RPC call z_listoperationids and update z_getoperationstatus to take a list parameter.
Refactoring and small improvements to async rpc operations.
Closes #1293 by adding z_getoperationresult and making z_getoperationstatus idempotent.
Add chaining of JoinSplits within a transaction.
Disable option to allow multiple async rpc workers.
Coinbase utxos can only be spent when sending to a single zaddr. Change from the transaction will be sent to the same zaddr.
Fix bug where call to sign and send a transaction was in wrong scope.
Added option to close a queue and wait for queued up operations to finish, rather than just closing a queue and immediately cancelling all operations.
Fix bug where wallet was not persisting witnesses to disk. Author: str4d
Refactor to use wallet note tracking from commit a72379
Clear the operation queue when closing it.
Add test for AsyncRPCQueue and AsyncRPCOperation.
Add shared queue to AsynRPCQueue.
Update RPCServer to use AsyncRPCQueue’s shared queue.
Remove redundant check when getting spending key for a payment address.
Add tests for async queue and rpc commands: z_getoperationstatus, z_getoperationresult, z_listoperationids, z_sendmany
Remove redundant call.
Add logging under the category “asyncrpc”.
Add extra checking of memo data in hexadecimal string format.
Add friend class for testing private members of AsyncRPCOperation_sendmany.
Add z_getbalance and z_gettotalbalance RPC calls to close #1201.
Fix typo in error message
Disable proof generation when testmode is enabled in async SendMany operation.
Reduce use of global pzcashParams with private member variable
Revert “Reduce use of global pzcashParams with private member variable”
Replace zcashParams_ with global.
Add tests to try and improve coverage of perform_joinsplit.
Add GetUnspentNotes to wallet.
Add test for GetUnspentNotes() in wallet.
Refactor async sendmany and getbalance calls to use GetUnspentNotes().
Add more logging.
Disable z_sendmany in safe mode
Rename GetUnspentNotes to GetFilteredNotes
Add z_listreceivedbyaddress RPC call
Add ‘DEPRECATED’ to help message of zcraw* commands
Update formatting and documentation.
Move lock guard to start of addOperation to protect isClosed() and isFinishing()
Fix formatting
Add lock guard to getNumberOfWorkers()
Replace unique_lock with lock_guard, where appropriate, for consistency
Add extra RPC parameter checks for minconf<0 and zaddr not belonging to wallet.
Add test for calling RPC z_getbalance, z_gettotalbalance, z_listreceivedbyaddress with invalid parameters.
Fix formatting
Update log statement to include fee.
Fix incorrect default value for argument of GetFilteredNotes.
Formatting and updated test per review.
Add lock for member variables. Clean up and clarify that id_ and creation_time_ are never to be mutated anywhere. Fix incomplete copy/assignment constructors.
Remove unused varible.
Add ticket number to issues raised in comment.
Add assert for two mutually exclusive member variables.
Improve error reporting when attempting to spend coinbase utxos.
Use zcash constants
Fix formatting
Add assert
Update comment with ticket issue number
Remove line of commented out code we don’t need
Improve check that user supplied memo field is too long.
Replace GetTxid() with GetHash()
Update payment-api.md
Update security-warnings.md about REST interface
Update payment API documentation for beta 1

Taylor Hornby (2):
Add -Wformat -Wformat-security
Use -Wformat in the test for -Wformat-security

 <no title>

 Eran Tromer (1):
CreateJoinSplit: add start_profiling() call

Jack Grigg (22):
Extend createjoinsplit to benchmark parallel JoinSplits
Add total number of commitments to getblockchaininfo
Only enable getblocktemplate when wallet is enabled
Only run wallet tests when wallet is enabled
Add a tool for profiling the creation of JoinSplits
Exclude test binaries from make install
Scan the whole chain whenever a z-key is imported
Instruct users to run zcash-fetch-params if network params aren’t available
Trigger metrics UI refresh on new messages
Strip out the SECURE flag in metrics UI so message style is detected
Handle newlines in UI messages
Suggest ./zcutil/fetch-params.sh as well
Update debug categories
Rename build-aux/m4/bitcoin_find_bdb48.m4 to remove version
Throw an error if zcash.conf is missing
Show a friendly message explaining why zcashd needs a zcash.conf
Fix gtest ordering broken by #1949
Debian package lint
Generate Debian control file to fix shlibs lint
Create empty zcash.conf during performance measurements
Create empty zcash.conf during coverage checks
Coverage build system tweaks

Jay Graber (1):
Update release process to check in with users who opened resolved issues

Paige Peterson (2):
Create ISSUE_TEMPLATE.md
move template to subdirectory, fix typo, include prompt under describing issue section, include uploading file directly to github ticket as option for sharing logs

Sean Bowe (4):
Add test for IncrementalMerkleTree::size().
Add ‘CreateJoinSplit’ standalone utility to gitignore.
Add test for z_importkey rescanning from beginning of chain.
Bump version to 1.0.5.

Simon Liu (13):
Fixes #1964 to catch general exception in z_sendmany and catch exceptions as reference-to-const.
Fixes #1967 by adding age of note to z_sendmany logging.
Fixes a bug where the unsigned transaction was logged by z_sendmany after a successful sign and send, meaning that the logged hash fragment would be different from the txid logged by “AddToWallet”. This issue occured when sending from transparent addresses, as utxo inputs must be signed. It did not occur when sending from shielded addresses.
Bump COPYRIGHT_YEAR from 2016 to 2017.
Closes #1780. Result of z_getoperationstatus now sorted by creation time of operation
Remove UTF-8 BOM efbbbf from zcash.conf to avoid problems with command line tools
Closes #1097 so zcash-cli now displays license info like zcashd.
Fixes #1497 ZCA-009 by restricting data exporting to user defined folder.
Closes #1957 by adding tx serialization size to listtransactions output.
Fixes #1960: z_getoperationstatus/result now includes operation details.
Update walletbackup.py qa test to use -exportdir option
Add missing header required by std::accumulate
Increase timeout for z_sendmany transaction in wallet.py qa test

Wladimir J. van der Laan (1):
rpc: Implement random-cookie based authentication

 <no title>

 Daira Hopwood (3):
Update pchMessageStart for mainnet and testnet.
Update version numbers for 1.0.0-rc4.
Add release notes for 1.0.0-rc4.

Jack Grigg (4):
Integrate production Founders’ Reward keys
Remove Founders’ Reward override from #1398
Regenerate mainnet and testnet genesis blocks for nMaxTipAge change
Update tests for new genesis blocks

Sean Bowe (1):
Zcash zk-SNARK public parameters for 1.0 “Sprout”.

 <no title>

 Cory Fields (4):
Depends: Add ZeroMQ package
travis: install a recent libzmq and pyzmq for tests
build: Make use of ZMQ_CFLAGS
build: match upstream build change

Daira Hopwood (2):
Better error reporting for the !ENABLE_WALLET && ENABLE_MINING case.
Address @str4d’s comment about the case where -gen is not set. Also avoid shadowing mineToLocalWallet variable.

Daniel Cousens (3):
init: amend ZMQ flag names
init: add zmq to debug categories
zmq: prepend zmq to debug messages

Jack Grigg (33):
Update comment
Remove OpenSSL PRNG reseeding
Address review comments
Fix linking error in CreateJoinSplit
Add compile flag to disable compilation of mining code
Upgrade OpenSSL to 1.1.0d
Show all JoinSplit components in getrawtransaction and decoderawtransaction
Use a more specific exception class for note decryption failure
Switch miner to P2PKH, add -mineraddress option
Update help text for mining options
Correct #ifdef nesting of miner headers and helper functions
Add ZMQ libs to zcash-gtest
Fix python syntax in ZMQ RPC test
[qa] py2: Unfiddle strings into bytes explicitly in ZMQ RPC test
Bitcoin -> Zcash in ZMQ docs
Add ZeroMQ license to contrib/debian/copyright
[depends] ZeroMQ 4.2.1
Clarify that user only needs libzmq if not using depends system
Bump suggested ZMQ Debian package to 4.1 series
Add -minetolocalwallet flag, enforced on -mineraddress
Add test to check for presence of vpub_old & vpub_new in getrawtransaction
Add a flag for enabling experimental features
Require -experimentalmode for wallet encryption
Migrate Zcash-specific code to UniValue
Manually iterate over UniValue arrays in tests
Remove JSON Spirit from contrib/debian/copyright
unsigned int -> size_t for comparing with UniValue.size()
[cleanup] Remove unused import
[cleanup] Simplify test code
Squashed ‘src/univalue/’ content from commit 9ef5b78
Update UniValue includes in Zcash-specific code
UniValue::getValues const reference
Get rid of fPlus argument to FormatMoney in Zcash-specific code

Jeff Garzik (4):
Add ZeroMQ support. Notify blocks and transactions via ZeroMQ
UniValue: prefer .size() to .count(), to harmonize w/ existing tree
UniValue: export NullUniValue global constant
Convert tree to using univalue. Eliminate all json_spirit uses.

Johnathan Corgan (5):
zmq: require version 4.x or newer of libzmq
zmq: update and cleanup build-unix, release-notes, and zmq docs
autotools: move checking for zmq library to common area in configure.ac
zmq: update docs to reflect feature is compiled in automatically if possible
zmq: point API link to 4.0 as that is what we are conforming to [Trivial]

Jonas Schnelli (24):
QA: Add ZeroMQ RPC test
depends: fix platform specific packages variable
[travis] add zmq python module
use CBlockIndex* insted of uint256 for UpdatedBlockTip signal
[ZMQ] refactor message string
[ZMQ] append a message sequence number to every ZMQ notification
fix rpc-tests.sh
extend conversion to UniValue
expicit set UniValue type to avoid empty values
special threatment for null,true,false because they are non valid json
univalue: add support for real, fix percision and make it json_spirit compatible
univalue: correct bool support
fix rpc unit test, plain numbers are not JSON compatible object
remove JSON Spirit UniValue wrapper
Remove JSON Spirit wrapper, remove JSON Spirit leftovers
fix rpc batching univalue issue
fix missing univalue types during constructing
fix univalue json parse tests
univalue: add type check unit tests
fix util_tests.cpp clang warnings
fix rpcmining/getblocktemplate univalue transition logic error
remove univalue, prepare for subtree
[Univalue] add univalue over subtree
remove $(@F) and subdirs from univalue make

João Barbosa (2):
Add UpdatedBlockTip signal to CMainSignals and CValidationInterface
Fix ZMQ Notification initialization and shutdown

Paragon Initiative Enterprises, LLC (1):
Use libsodium’s CSPRNG instead of OpenSSL’s

Scott (1):
Update random.h

Sean Bowe (3):
Bump protocol version in release process if necessary.
Fix use after free in transaction_tests.
Update libsnark.

Simon Liu (16):
Closes #2057 by adding extra zrpcunsafe logging
Update z_sendmany logging
Add test to verify z_sendmany logging
Update test to verify order of zrpcunsafe log messages
Closes #2045 by allowing z_sendmany with 0 fee
Closes #2024 by documenting and testing method field in z_getoperationstatus
Add parameter interaction, where zrpcunsafe implies zrpc
Update zrpc vs zrpcunsafe logging in z_sendmany operation
Add test for z_sendmany with fee of 0
Update test to check for more joinsplit related fields in getrawtransaction
Add comment about fix for #2026.
Update test to check for updated error messages in AmountFromValue().
Bump version to 1.0.6 as part of release process
Debian man pages updated as part of release process
Update release notes as part of release process
Update debian changelog as part of release process

Wladimir J. van der Laan (10):
Simplify RPCclient, adapt json_parse_error test
util: Add ParseInt64 and ParseDouble functions
univalue: add strict type checking
Don’t go through double in AmountFromValue and ValueFromAmount
Get rid of fPlus argument to FormatMoney
Changes necessary now that zero values accepted in AmountFromValue
rpc: Accept scientific notation for monetary amounts in JSON
rpc: Make ValueFromAmount always return 8 decimals
univalue: Avoid unnecessary roundtrip through double for numbers
util: use locale-independent parsing in ParseDouble

fanquake (3):
[depends] zeromq 4.0.7
[depends] ZeroMQ 4.1.4
[depends] ZeroMQ 4.1.5

isle2983 (1):
[copyright] add MIT License copyright header to zmq_sub.py

mrbandrews (1):
Fixes ZMQ startup with bad arguments.

paveljanik (1):
[Trivial] start the help texts with lowercase

 <no title>

 Jack Grigg (4):
Equihash: Only compare the first n/(k+1) bits when sorting.
Randomise the nonce in the block header.
Clear mempool before using it for benchmark test, fix parameter name.
Fix memory leak in large tx benchmark.

Sean Bowe (5):
Increase block size to 2MB and update performance test.
Make sigop limit 20000 just as in Bitcoin, ignoring our change to the blocksize limit.
Remove the mainnet checkpoints.
Fix performance test for block verification.
Make validatelargetx test more accurate.

Taylor Hornby (1):
Add example mock test of CheckTransaction.

aniemerg (1):
Suppress Libsnark Debugging Info.

 <no title>

 Adam Brown (1):
[doc] Update port in tor.md

Bob McElrath (1):
Add explicit shared_ptr constructor due to C++11 error

Cory Fields (2):
libevent: add depends
libevent: Windows reuseaddr workaround in depends

Daira Hopwood (15):
Remove src/qt.
License updates for removal of src/qt.
Correct license text for LGPL.
Remove QT gunk from Makefiles.
Remove some more QT-related stragglers.
Update documentation for QT removal.
Update which libraries are allowed to be linked to zcashd by symbol-check.py.
Remove NO_QT make option.
.gitignore cache/ and venv-mnf/
Remove unused packages and patches.
Delete -rootcertificates from bash completion script.
Line-wrap privacy notice. Use <> around URL and end sentence with ‘.’. Include privacy notice in help text for zcashd -help.
Update version numbers.
Improvement to release process doc.
Generate man pages.

Daniel Cousens (1):
torcontrol: only output disconnect if -debug=tor

Gregory Maxwell (3):
Avoid a compile error on hosts with libevent too old for EVENT_LOG_WARN.
Do not absolutely protect local peers from eviction.
Decide eviction group ties based on time.

Ian Kelling (1):
Docs: add details to -rpcclienttimeout doc

Jack Gavigan (2):
Removed markdown from COPYING
Updated the Bitcoin Core copyright statement

Jack Grigg (25):
Add anchor to output of getblock
Migrate IncrementalMerkleTree memory usage calls
Add tests for getmempoolinfo
Usability improvements for z_importkey
Implement an AtomicTimer
Use AtomicTimer for more accurate local solution rate
Metrics: Move local solution rate into stats
Metrics: Improve mining status
Expand on reasons for mining being paused
Simplify z_importkey by making rescan a string
Revert “Closes #1680, temporary fix for rpc deadlock inherited from upstream.”
Add libevent to zcash-gtest
[depends] libevent 2.1.8
Test boolean fallback in z_importkey
Require that z_importkey height parameter be in valid range
Update LocalSolPS test
Add AtomicTimer tests
Revert “Revert “rpc-tests: re-enable rpc-tests for Windows”“
Wrap error string
Fix typo
torcontrol: Improve comments
torcontrol: Add unit tests for Tor reply parsers
torcontrol: Fix ParseTorReplyMapping
torcontrol: Check for reading errors in ReadBinaryFile
torcontrol: Log invalid parameters in Tor reply strings where meaningful

Jay Graber (5):
Document returned results of submitblock
Edit release-process.md for clarity
Add security warning to zcash-cli –help and –version message output
Add security warning to zcashd metrics display
Add security message to license text, rm url from translation string

Jonas Schnelli (1):
Fix torcontrol.cpp unused private field warning

Karl-Johan Alm (4):
Added std::unique_ptr<> wrappers with deleters for libevent modules.
Switched bitcoin-cli.cpp to use RAII unique pointers with deleters.
Added some simple tests for the RAII-style events.
Added EVENT_CFLAGS to test makefile to explicitly include libevent headers.

Luke Dashjr (1):
Skip RAII event tests if libevent is built without event_set_mem_functions

MarcoFalke (2):
[doc] [tor] Clarify when to use bind
torcontrol debug: Change to a blanket message that covers both cases

Matt Quinn (1):
Consolidate individual references to the current maximum peer connection value of 125 into a single constant declaration.

Nathaniel Mahieu (1):
Clarify documentation for running a tor node

Patrick Strateman (1):
Remove vfReachable and modify IsReachable to only use vfLimited.

Pavel Janík (3):
Implement REST mempool API, add test and documentation.
Prevent -Wshadow warnings with gcc versions 4.8.5, 5.3.1 and 6.2.1.
Make some global variables less-global (static)

Peter Todd (2):
Better error message if Tor version too old
Connect to Tor hidden services by default

Pieter Wuille (3):
Implement accurate memory accounting for mempool
Separate core memory usage computation in core_memusage.h
Fix interrupted HTTP RPC connection workaround for Python 3.5+

Sean Bowe (2):
Introduce librustzcash and Rust to depends system.
Allow Rust-language related assets to be disabled with --disable-rust.

Simon Liu (4):
Remove stale Qt comments and dead code
Remove QT translation support files
Remove redundant gui options from build scripts
Closes #2186. RPC getblock now accepts height or hash.

Wladimir J. van der Laan (28):
doc: remove documentation for rpcssl
qa: Remove -rpckeepalive tests from httpbasics
Remove rpc_boostasiotocnetaddr test
build: build-system changes for libevent
tests: GET requests cannot have request body, use POST in rest.py
evhttpd implementation
Implement RPCTimerHandler for Qt RPC console
Document options for new HTTP/RPC server in –help
Fix race condition between starting HTTP server thread and setting EventBase()
Move windows socket init to utility function
Revert “rpc-tests: re-enable rpc-tests for Windows”
init: Ignore SIGPIPE
http: Disable libevent debug logging, if not explicitly enabled
rpc: Split option -rpctimeout into -rpcservertimeout and -rpcclienttimeout
Make RPC tests cope with server-side timeout between requests
chain: define enum used as bit field as uint32_t
auto_ptr → unique_ptr
bitcoin-cli: More detailed error reporting
depends: Add libevent compatibility patch for windows
bitcoin-cli: Make error message less confusing
test: Avoid ConnectionResetErrors during RPC tests
net: Automatically create hidden service, listen on Tor
torcontrol improvements and fixes
doc: update docs for Tor listening
tests: Disable Tor interaction
Fix memleak in TorController [rework]
tor: Change auth order to only use HASHEDPASSWORD if -torpassword
torcontrol: Explicitly request RSA1024 private key

calebogden (1):
Fixing typos on security-check.py and torcontrol.cpp

fanquake (1):
[depends] libevent 2.1.7rc

instagibbs (1):
Add common failure cases for rpc server connection failure

paveljanik (1):
[TRIVIAL] Fix typo: exactmath -> exactmatch

unsystemizer (1):
Clarify listenonion

 <no title>

 Alfie John (2):
Typo in params README
Updating wording to match Beta Guide

Bryan Stitt (1):
Link to beta guide

Daira Hopwood (9):
Benchmark 50 iterations of solveequihash
Remove FindAndDelete. refs #1386
Update my email address in the Code of Conduct.
Repair FormatSubVersion tests. refs #1138
WIP: update address prefixes. refs #812
Reencode keys in JSON test data. refs #812
CBitcoinAddress should use nVersionBytes == 2.
Repair bitcoin-util-test.
Repair rpc-tests/signrawtransactions.py.

Gregory Maxwell (1):
Limit setAskFor and retire requested entries only when a getdata returns.

Jack Grigg (43):
Add support for encrypting spending keys
Check we haven’t trashed the first key entry with the second
Move serialized Zcash address length constants into zcash/Address.hpp
Measure multithreaded solveequihash time per-thread
Add a make command for checking expected failures
Enable high-priority alerts to put the RPC into safe mode
Fix test
Add wallet method to clear the note witness cache
Clear note witness caches on reindex
Write note witness cache atomically to disk to avoid corruption
Test that invalid keys fail to unlock the keystore
Implement CSecureDataStream for streaming CKeyingMaterial
Cache note decryptors in encrypted keystore
Use correct lock for spending keys
Upgrade Boost to 1.62.0
Upgrade libgmp to 6.1.1
Upgrade OpenSSL to 1.1.0b
Upgrade miniupnpc to 2.0
Upgrade ccache to 3.3.1
Release process: check dependencies for updates
Fix auto_ptr deprecation warning in Boost
Replace auto_ptr with unique_ptr
Re-enable disabled compiler warnings
Disable nearly everything in OpenSSL
Add libsnark to pre-release dependency checks
Assert that new OpenSSL allocators succeed
Remove no-autoalginit and no-autoerrinit OpenSSL flags
Use asserts to check allocation errors in CECKey::Recover
Simplify ClearNoteWitnessCache()
Add tests for alerts enabling RPC safe mode
Ensure correctness if asserts are compiled out
Disable OP_CODESEPARATOR
Remove OP_CODESEPARATOR from tests
Downgrade bdb to 5.3.28
Use CLIENT_VERSION_BUILD to represent -beta and -rc in client version
Update release process with version schema
Formatting fix
Mark previously-valid test data as invalid
Re-encode hard-coded addresses in tests
Re-encode Founders’ Reward keys
Fix secp256k1 test compilation
Fix zkey test
Update address in Founders’ Reward gtest

Jay Graber (4):
Link to z.cash on security-warnings.md
Add section abt confs and reorgs to security-warnings.md
Update wording
Final edits

Kevin Gallagher (5):
Lock to prevent parallel execution of fetch-params.sh
Updates dns.testnet.z.cash -> dnsseed.testnet.z.cash
Verify TLS certificates w/ wget in fetch-params.sh
Inserts some notes related to testnet deployment
Adds note about updating guide during testnet deployment

Pieter Wuille (1):
Fix and improve relay from whitelisted peers

Robert C. Seacord (1):
Changes to upgrade bdb to 6.2.23

Sean Bowe (1):
Update to beta2 public parameters, remove regtest/testnet3 parameters subdirectories.

Simon (20):
Replace %i format specifier with more commonly used %d.
Fix GetFilteredNotes to use int for minDepth like upstream and avoid casting problems. Don’t use FindMyNotes as mapNoteData has already been set on wallet tx.
Update test to filter and find notes.
Add support for spending keys to the encrypted wallet.
Update to use new API in CCryptoKeyStore and store a viewing key in walletdb.
Fix comment and formatting per review
Add founders reward to ChainParams. Fix bug where subsidy slow shift was ignored.
Founders reward: changed index computation, added new test and some refactoring.
Founders reward: Refactor test and formatting per review.
Refactor to add test to verify number of rewards each mainnet address will receive
Refactor and fix per review
Update comment per review
Update founders reward test to output path of temporary wallet.dat file which contains keys which can be used for testing founders reward addresses.
Update testnet founders reward addresses
Add mainnet 2-of-3 multisig addresses for testing.
Add field fMinerTestModeForFoundersRewardScript to chainparams
Update mainnet addresses used for testing to have the correct number
Fixes #1345 so that UTXO debit and credits are computed correctly for a transaction.
Closes #1371 by updating signed message
Modify message string so we don’t need to backport commits which implement FormatStateMessage and GetDebugMessage and involve changes to consensus/validation.h

Wladimir J. van der Laan (1):
build: remove libressl check

fanquake (1):
[depends] OpenSSL 1.0.1k - update config_opts

kazcw (1):
prevent peer flooding request queue for an inv

 <no title>

 Daira Hopwood (2):
Add Code of Conduct. fixes #802
Specify Sean as the second contact for conduct issues.

Jack Grigg (6):
Implement validator and basic solver for Equihash
Add test vectors for Equihash
Use Equihash for Proof-of-Work
Adjust genesis blocks to have valid solutions and hashes
Fix tests that depend on old block header format
Fix pow_tests to work with Equihash

Nathan Wilcox (4):
Log all failing rpc tests concisely.
Apply a patch from Sean to update wallet to use our new founders-reward aware balances.
Fix (most) rpc tests by updating balances. zcpour, zcpourdoublespend, and txn_doublespend currently fail.
Update a bunch of docs by adding a banner, delete a bunch of known bitrot docs; does not update release-process.md.

Sean Bowe (5):
Fix miner_tests to work with equihash
Add missing synchronization that causes race condition in test.
Implementation of Founders’ Reward.
Fix remaining RPC tests.
Change pchMessageStart for new testnet.

Taylor Hornby (8):
Add automated performance measurement system.
Add equihash solving benchmarks
Add JoinSplit verification benchmarks
Add verify equihash benchmark
Don’t leave massif.out lying around after the benchmarks
Use a separate datadir for the benchmarks
Make benchmark specified by command-line arguments
Benchmark a random equihash input.

 <no title>

 Daira Hopwood (22):
Add link to protocol specification.
Add tests for IsStandardTx applied to v2 transactions.
Make v2 transactions standard. This also corrects a rule about admitting large orphan transactions into the mempool, to account for v2-specific fields.
Changes to build on Alpine Linux.
Add Tromp’s implementation of Equihash solver (as of tromp/equihash commit 690fc5eff453bc0c1ec66b283395c9df87701e93).
Integrate Tromp solver into miner code and remove its dependency on extra BLAKE2b implementation.
Minor edits to dnsseed-policy.md.
Avoid boost::posix_time functions that have potential out-of-bounds read bugs. ref #1459
Add help for -equihashsolver= option.
Assert that the Equihash solver is a supported option.
Repair check-security-hardening.sh.
Revert “Avoid boost::posix_time functions that have potential out-of-bounds read bugs. ref #1459”
Fix race condition in rpc-tests/wallet_protectcoinbase.py. closes #1597
Fix other potential race conditions similar to ref #1597 in RPC tests.
Update the error message string for tx version too low. ref #1600
Static assertion that standard and network min tx versions are consistent.
Update comments in chainparams.cpp.
Update unit-tests documentation. closes #1530
Address @str4d’s comments on unit-tests doc. ref #1530
Remove copyright entries for some files we deleted.
Update license text in README.md. closes #38
Bump version numbers to 1.0.0-rc2.

David Mercer (4):
explicitly pass HOST and BUILD to ./configure
allow both HOST and BUILD to be passed in from the zcutil/build.sh
pass in both HOST and BUILD to depends system, needed for deterministic builds
explicitly pass HOST and BUILD to libgmp ./configure

Gregory Maxwell (1):
Only send one GetAddr response per connection.

Jack Grigg (31):
Implement MappedShuffle for tracking the permutation of an array
Implement static method for creating a randomized JSDescription
Randomize JoinSplits in z_sendmany
Refactor test code to better test JSDescription::Randomized()
Remove stale comment
Rename libbitcoinconsensus to libzcashconsensus
Rename bitcoin-tx to zcash-tx
Remove the RC 1 block index error message
Disable wallet encryption
Add more assertions, throw if find_output params are invalid
Clear witness cache when re-witnessing notes
Add heights to log output
Throw an error when encryptwallet is disabled
Document that wallet encryption is disabled
Document another wallet encryption concern
Improve security documentation
Fix RPC tests that require wallet encryption
Add test that encryptwallet is disabled
Revert “Revert “Avoid boost::posix_time functions that have potential out-of-bounds read bugs. ref #1459”“
GBT: Support coinbasetxn instead of coinbasevalue
GBT: Add informational founders’ reward value to coinbasetxn
GBT: Correct block header in proposals RPC test
GBT: Add RPC tests
Disallow v0 transactions as a consensus rule
Reject block versions lower than 4
Regenerate genesis blocks with nVersion = 4
Use tromp’s solver to regenerate miner tests
Update tests for new genesis blocks
Enforce standard transaction rules on testnet
Update sighash tests for new consensus rule
Fix RPC test

Jay Graber (7):
Rm bitcoin dev keys from gitian-downloader, add zcash dev keys
Rm bips.md
Update files.md for zcash
Update dnsseed-policy.md
Developer notes still relevant
Document RPC interface security assumptions in security-warnings.md
Update RPC interfaces warnings language

Patrick Strateman (1):
CDataStream::ignore Throw exception instead of assert on negative nSize.

Pieter Wuille (4):
Introduce constant for maximum CScript length
Treat overly long scriptPubKeys as unspendable
Fix OOM bug: UTXO entries with invalid script length
Add tests for CCoins deserialization

Simon (17):
Fixes CID 1147436 uninitialized scalar field.
Fixes CID 1352706 uninitialized scalar field.
Fixes CID 1352698 uninitialized scalar field.
Fixes CID 1352687 uninitialized scalar field.
Fixes CID 1352715 uninitialized scalar field.
Fixes CID 1352686 uninitialized scalar variable.
Fixes CID 1352599 unitialized scalar variable
Fixes CID 1352727 uninitialized scalar variable.
Fixes CID 1352714 uninitialized scalar variable.
Add security warning about logging of z_* calls.
Add debug option “zrpcunsafe” to be used when logging more sensitive information such as the memo field of a note.
Closes #1583 by setting up the datadir for the wallet gtest.
Fix issue where z_sendmany is too strict and does not allow integer based amount e.g. 1 which is the same as 1.0
Update test to use integer amount as well as decimal amount when calling z_sendmany
Fix build problem with coins_tests
Workaround g++ 5.x bug with brace enclosed initializer.
Patch backport of upstream 1588 as we don’t (yet) use the NetMsgType namespace

Wladimir J. van der Laan (1):
net: Ignore notfound P2P messages

 <no title>

 Jack Grigg (8):
Rework zcutil/build-debian-package.sh to place files correctly
Add lintian check to zcutil/build-debian-package.sh
Fix DEBIAN/control errors raised by lintian
Build libsnark with -march=x86-64 instead of -march=native
Disable the metrics screen on regtest
Add the Zcash genesis blocks
Update tests for new genesis blocks
Update version strings to 1.0.0

Kevin Gallagher (6):
Use fakeroot to build Debian package
Update Debian package maintainer scripts
Fixes executable mode of maintainer scripts
Add DEBIAN/rules file (required by policy)
Adds zcash.examples and zcash.manpages
Run Lintian after built package is copied to $SRC_PATH

 <no title>

 Sean Bowe (6):
Change memo field size and relocate ciphertexts field of JoinSplit description.
Implement zkSNARK compression.
Perform curve parameter initialization at start of gtest suite.
Update libsnark dependency.
Enable MONTGOMERY_OUTPUT everywhere.
Update proving/verifying keys.

Jack Grigg (11):
Add support for spending keys to the basic key store.
Merge AddSpendingKeyPaymentAddress into AddSpendingKey to simplify API.
Add methods for byte array expansion and compression.
Update Equihash hash generation to match the Zcash spec.
Extend byte array expansion and compression methods with optional padding.
Store the Equihash solution in minimal representation in the block header.
Enable branch coverage in coverage reports.
Add gtest coverage and intermediates to files deleted by “make clean”.
Remove non-libsnark dependencies and test harness code from coverage reports.
Add separate lock for SpendingKey key store operations.
Test conversion between solution indices and minimal representation.

Daira Hopwood (6):
Move bigint arithmetic implementations to libsnark.
Add mostly-static checks on consistency of Equihash parameters, MAX_HEADERS_RESULTS, and MAX_PROTOCOL_MESSAGE_LENGTH.
Change some asserts in equihash.cpp to be static.
Decrease MAX_HEADERS_RESULTS to 160. fixes #1289
Increment version numbers for z9 release.
Add these release notes for z9.

Taylor Hornby (5):
Disable hardening when building for coverage reports.
Upgrade libsodium for AVX2-detection bugfix.
Fix inconsistent optimization flags; single source of truth.
Add -fwrapv -fno-strict-aliasing; fix libzcash flags.
Use libsodium’s s < L check, instead checking that libsodium checks that.

Simon Liu (3):
Fixes #1193 so that during verification benchmarking it does not unncessarily create thousands of CTransaction objects.
Closes #701 by adding documentation about the Payment RPC interface.
Add note about zkey and encrypted wallets.

Gaurav Rana (1):
Update zcash-cli stop message.

Tom Ritter (1):
Clarify comment about nonce space for Note Encryption.

Robert C. Seacord (1):
Memory safety and correctness fixes found in NCC audit.

Patrick Strateman (1):
Pull in some DoS mitigations from upstream. (#1258)

Wladimir J. van der Laan (1):
net: correctly initialize nMinPingUsecTime.

 <no title>

 4ZEC (1):
Correct line swap

Cory Fields (7):
release: add _IO_stdin_used to ignored exports
release: add check-symbols and check-security make targets
release: always link librt for glibc back-compat builds
release: add security/symbol checks to gitian
depends: allow for CONFIG_SITE to be used rather than stealing prefix
gitian: use CONFIG_SITE rather than hijacking the prefix
gitian: create debug packages for linux/windows

Daira Hopwood (6):
Fix RPC tests to not rely on accounts.
Cosmetics in RPC tests.
Fix blank lines in DEBIAN/copyright license texts.
Move the increment of nWitnessCacheSize to make the later assertions correct.
Add another assertion to narrow down where the bug occurs.
Add another assertion about the witness cache.

Jack Grigg (25):
Update release process to sign release tags
WriteWitnessCache: Catch errors and abort transaction
Throw an RPC error for all accounts except the default
Update tests for account deprecation
Deprecated -> Unsupported in RPC error
Correct docstring
Add unit tests for WriteWitnessCache
Document CWalletTx::FindMyNotes
Refactor test to clarify expectations
Add unit test that fails when calling FindMyNotes on a locked wallet
Add RPC test showing correct handling of JS txns from blockchain
Break the RPC test by encrypting the mirroring wallet
Delay caching of nullifiers when wallet is locked
Update comments
Only ignore runtime errors caused by failed note decryption
Remaining changes from bitcoin/bitcoin#6854
[gitian] Don’t call “make check-symbols”
Fix Makefiles so “make dist” will run
Render full version correctly in configure.ac
Update libsnark to include determinism fix
Address review comments
Add more asserts to track down the bug
Increment witnesses for new transactions on rescan
Add clear error message for upgrading users
Set CBlockIndex.hashAnchor correctly in ConnectBlock

Jay Graber (17):
Document wallet reindexing for z_importkey description in payment-api.md
Rm beta 1 release note about encrypted wallets
Note that Coinbase maturity interval does not protect JoinSplits
Refer to Zcash wiki in INSTALL
Rm bitcoin logo
Rm build-unix.md, to keep single copy of build instructions for Zcash on github wiki
Rm Bitcoin-specific documentation
Add note that document is not updated for Zcash to translation policy
Rm doc for disabled REST interface
Change alpha to beta testnet, add zcash hidden service
Improve documentation on connecting to zcash hidden server
Improve documentation on connecting to zcash hidden server
Update tor.md
Distinguish between connecting to 1 vs multiple tor nodes
Revert “Rm Bitcoin-specific documentation”
Mv btc release notes to doc/bitcoin-release-notes
Reword joinsplit anchor paragraph

Kevin Gallagher (24):
Set wget retry options for fetching parameters
Increases timeout to 30s, wait before retry to 3s
Initial packaging for Debian
Moves zcash-fetch-params to /usr/bin
Adds newline between source and package definition
Adds copyright file back to Debian package
Updates Linux gitian descriptor file for Zcash
Updates trusty -> jessie in Gitian Linux descriptor
Adds distro: debian to gitian-linux.yml
Updates Gitian descriptor for Zcash
Removes Windows and OSX packaging from EXTRA_DIST
Moves V=1 and NO_QT=1 to MAKEOPTS
Include contrib/devtools/split-debug.sh from upstream
Adds faketime to Gitian build dependencies
Inlude crypto/equihash.tcc in list of sources for dist
Adds zcash/Zcash.h to LIBZCASH sources
Adds zcash/Proof.hpp to LIBZCASH_H
Add alertkeys.h to libbitcoin_server_a_SOURCES
Adds files in src/zcash/circuit to libzcash_a_SOURCES
Adds zcbenchmarks.h to libbitcoin_wallet_a_SOURCES
Adds json_test_vectors.h to zcash_gtest_SOURCES
Adds additional licenses to Debian copyright file
Updates Zcash Core developers -> Zcash developers
Adds . to blank lines in Google license

MarcoFalke (3):
[gitian] Set reference date to something more recent
[gitian] Default reference_datetime to commit author date
[gitian] hardcode datetime for depends

Sean Bowe (1):
Make 100KB transaction size limit a consensus rule, rather than a standard rule.

Simon (11):
Add vjoinsplit to JSON output of RPC call gettransaction
Fixes #1478 by ensuring wallet tests have the -datadir environment set appropriately.
Fixes #1491 by updating help message for rpc call z_importkey
Fix incorrect check of number of parameters for z_getnewaddress.
Add tests to verify that all z_* rpc calls return an error if there are too many input parameters.
Rename client identifier from Satoshi to MagicBean (closes #1481)
Use -debug=zrpc for z_* rpc calls (#1504)
Document CWallet::GetFilteredNotes and fix return type which should be void.
Fix test so that the encrypted wallet is output to the test_bitcoin -datadir folder.
Reorder gtests in zcash-gtest.
Return improved error message when trying to spend Coinbase coins (#1373).

Wladimir J. van der Laan (6):
devtools: add libraries for bitcoin-qt to symbol check
gitian: use trusty for building
gitian: make windows build deterministic
gitian: Need ca-certificates and python for LXC builds
build: Remove unnecessary executables from gitian release
gitian: Add –disable-bench to config flags for windows

 <no title>

 Chirag Davé (1):
fReopenDebugLog and fRequestShutdown should be type sig_atomic_t

Daira Hopwood (9):
Refactor README docs to avoid duplication.
Fix licensing to comply with OpenSSL and Berkeley DB licenses.
Changes to upgrade bdb to 6.2.23
util: Update tinyformat
Tweak descriptions of mining parameters for example zcash.conf.
Update dnsseeds for mainnet. closes #1369
Minor update to release process.
Remove the override of nMaxTipAge that effectively disables it on testnet.
Update version numbers for rc3.

Jack Grigg (2):
Disable metrics screen in performance-measurements.sh
Link to #826 in doc/security-warnings.md, link to new Security website page

Joe Turgeon (2):
Fixing floating point exception caused by metrics. Using default column width unless in a TTY.
Adding handling for ioctl failure. Updates from code review in PR #1615.

Kevin Gallagher (2):
Prefer sha256sum but fall back to shasum if not available
Adds libgomp1 to Debian package depends

Louis Nyffenegger (1):
Fix typo in README.md

Paige Peterson (3):
add zcash.config
fix per Jack’s mod suggestions
fix per Daira’s suggestions

Pieter Wuille (3):
Include signal.h for sig_atomic_t in WIN32
Revert “Include signal.h for sig_atomic_t in WIN32”
Use std::atomic for fRequestShutdown and fReopenDebugLog

Sean Bowe (1):
Add manpages for zcashd and zcash-cli binaries for debian.

Simon (4):
Fix incorrect error message in z_sendmany
Add z_sendmany rule that when sending coinbase utxos to a zaddr they must be consumed entirely, without any change, since there is currently no way to specify a change address in z_sendmany.
Add assert to AsyncRPCOperation_sendmany
Bump version number in sendalert.cpp

bitcartel (1):
Update payment-api.md

 <no title>

 Ethan Heilman (1):
Increase test coverage for addrman and addrinfo

EthanHeilman (1):
Creates unittests for addrman, makes addrman testable. Adds several unittests for addrman to verify it works as expected. Makes small modifications to addrman to allow deterministic and targeted tests.

Jack Grigg (24):
Use depth-first scan for eliminating partial solutions instead of breadth-first
Add a 256-bit reserved field to the block header
Set -relaypriority default to false
Regenerate genesis blocks
Update tests to account for reserved field
Update RPC tests to account for reserved field
Decrease block interval to 2.5 minutes
Update tests to account for decreased block interval
Update RPC tests to account for decreased block interval
Updated a hard-coded number of blocks to account for decreased block interval
Fix failing tests
Increase Equihash parameters to n = 96, k = 3 (about 430 MiB)
Update tests to account for new Equihash parameters
Speed up FullStepRow index comparison by leveraging big-endian byte layout
Use little-endian for hash personalisation and hashing indices
Use htole32 and htobe32 for endian conversions
Regenerate genesis blocks
Update miner tests for platform-independent Equihash
Tweaks after review
Implement new difficulty algorithm (#931)
Update tests for new difficulty algorithm
Improve comments per review
Handle full Zcash version string in AC_INIT
Fix bug in network hashrate lookup window configuration

Patrick Strateman (1):
CAddrMan::Deserialize handle corrupt serializations better.

Philip Kaufmann (1):
remove using namespace std from addrman.cpp

Sean Bowe (28):
Move new coins tests to within coins_tests test suite.
Ensure merkle tree fixed point removal is tested against inside coins_tests.
Allow pours to be anchored to intermediate treestates of a transaction.
Test behavior of chained pour consensus rules.
Remove redundant constraints.
Change merkle tree depth to 29.
Update the zkSNARK parameters.
Add test to ensure parent treestates only can appear earlier in the transaction or in the global state, not later.
Minor changes to coins_tests.
Rename CheckInputs to ContextualCheckInputs since it relies on a global variable and assumes calling conditions.
Refactor contextual and noncontextual input checks.
Prevent coinbases from being spent to transparent outputs.
Disable coinbase-must-be-protected rule on regtest.
Ensure mempool integrity checks don’t trip on chained joinsplits.
Enforce BIP16 and BIP30 unconditionally to all blocks.
Enforce remaining softfork activation rules unconditionally.
Ensure NonContextualCheckInputs runs before routines in ContextualCheckInputs.
Rename to fCoinbaseMustBeProtected.
Disable enforced coinbase protection in miner_tests.
Do not encode leading bytes in PaymentAddress serialization; this is a task for a higher-level API.
Use base58check to encode Zcash payment addresses, such that the first two bytes are “zc”.
Add tests for CZCPaymentAddress.
Fix test against merkle tree root.
Added encoding for Zcash spending keys.
Guarantee first two bytes of spending key are SK
Make testnet addresses always start with ‘tn’.
Add test to ensure spending keys always encode with ‘SK’ at beginning.
Testnet spending keys should start with ‘TK’.

Simon (5):
Fix issue #717 where if addrman is starved of addresses (e.g. on testnet) the Select_() function will loop endlessly trying to find an address, and therefore eat up 100% cpu time on the ‘opencon’ thread.
Declare constants for the maximum number of retries, when to sleep between retries and how long for.
Implement issue #997 to reduce time for test_bitcoin due to sleeps in addrman. Related to issue #717.
Update to DistinctIndices function (for issue #857). Replaces pull request #974.
Update variable name.

Taylor Hornby (1):
Enable -alertnotify for hard fork detection. Test it.

 <no title>

 Alex (1):
add sha256sum support for Mac OS X

Alfie John (1):
Rename libzerocash to libzcash

Jack Grigg (21):
Implement mining slow start with a linear ramp
Update subsidy tests to account for mining slow start
Update miner tests to account for mining slow start
Disable mining slow start in regtest mode
Fix failing miner test
Add Zcash revision to version strings
Bitcoin -> Zcash in version and help text
Add Zcash Developers to CLI copyright notice
Minor error message tweak
Refactor StepRow to make optimisation easier
Cleanups
Implement index-truncation Equihash optimisation
Store truncated indices in the same char* as the hash (H/T tromp for the idea!)
Use template parameters to statically initialise Equihash
Merge StepRow XOR and trimming operations
Use comparator object for sorting StepRows
Store full indices in the same char as the hash
Use fixed-width array for storing hash and indices
Use optimised Equihash solver for miner and benchmarks
Fix comment
Fix nits after review

Nathan Wilcox (1):
Fix a test name bug so that make cov-zcash correctly runs the zcash-gtest binary. Fixes #946.

Sean Bowe (14):
Refactor PRF_gadget to hand responsibility to PRF_addr_a_pk_gadget for creating the ‘0’ argument to the PRF.
Enforce first four bits are zero for all spending keys and phi.
Enable binary serializations of proofs and r1cs keys, and make the CPourTx proof field fixed-size.
Reorder fields of CPourTx to reflect the spec.
Update proving key and tests that depend on transaction structure changes
Enable MULTICORE proving behavior with omp.
Pass -fopenmp at compile-time to enable MULTICORE.
Switch to Ed25519 for cryptographic binding of joinsplits to transactions.
Enforce that the S value of the ed25519 signature is smaller than the group order to prevent malleability attacks.
Use joinsplit_sig_t in more places.
Wrap lines in *CTransaction constructors.
Change error for invalid joinsplit signature for consistency.
Add additional assertions.
Update performance measurement transaction.

Simon (2):
Remove Bitcoin testnet seeds.
Remove Bitcoin mainnet seeds.

Taylor Hornby (16):
Fix build warnings in sighash tests.
Fix FORTIFY_SOURCE build errors.
Use HARDENED_CPPFLAGS in the Makefile consistently.
Use left shift instead of floating-point pow() in equihash.
Ignore deprecated declaration warnings.
Remove unused code in libzerocash util.cpp
Turn on -Werror for the Zcash build.
Patch libsnark to build with my compiler. Upstream PR #35.
Hide new Boost warnings on GCC 6.
Add ability to run things under valgrind.
Pass -DPURIFY to OpenSSL so it doesn’t clutter valgrind output.
Enable -v for valgrind so we can see counts for each error.
Sign JoinSplit transactions
We don’t want to benchmark signature creation / verification.
Implement signature verification in CheckTransaction
Fix tests for JoinSplit signatures

 <no title>

 Cameron Boehmer (1):
point “where do i begin?” readme link to 1.0 guide

Jack Grigg (15):
Track mined blocks to detect and report orphans and mining revenue
Refresh mining status to detect setgenerate changes
Add network stats to metrics screen
Show mining info once the node has finished loading
Improve locking in metrics
Adjust consensus rule to accept genesis block without height in coinbase
Fix previous commit
Ensure that no tracked blocks are skipped during orphan detection
Add build scripts and fetch-params.sh to “make install” and “make dist”
Use uint64_t for AtomicCounter
Fix gtest issue introduced into master
Fix whitespace in Makefile.gtest.include
Initialise walletdb system in a temp dir for all gtests
Revert “Initialise walletdb system in a temp dir for all gtests”
Change execution order of gtests to avoid bug

Kevin Gallagher (1):
Improves usability of fetch-params.sh

Sean Bowe (6):
Properly account for joinsplit value when deciding if a transaction should be placed in a mined block.
Add checkpoint at block 2500.
Throw more descriptive exceptions when the constraint system is violated.
Test that a pure joinsplit will mine if other transactions are in the mempool.
1.0.1 release.
Update man pages.

Simon (1):
Closes #1746. Add rpc call z_validateaddress to validate zaddrs.

 <no title>

 Jay Graber (3):
Add -t to git fetch for release-notes.py
Update version to 1.0.7-1
Update auto-generated manpages to 1.0.7-1

 <no title>

 Adam Weiss (1):
Buffer log messages and explicitly open logs

Alex van der Peet (1):
New RPC command disconnectnode

Allan Niemerg (1):
Pause mining during joinsplit creation

Casey Rodarmor (1):
Don’t share objects between TestInstances

Cory Fields (2):
locking: teach Clang’s -Wthread-safety to cope with our scoped lock macros
locking: add a quick example of GUARDED_BY

Daira Hopwood (1):
Don’t assume sizes of unsigned short and unsigned int in GetSizeOfCompactSize and WriteCompactSize. Fixes #2137

Daniel Kraft (1):
Fix univalue handling of \u0000 characters.

Florian Schmaus (1):
Add BITCOIND_SIGTERM_TIMEOUT to OpenRC init scripts

Forrest Voight (1):
When processing RPC commands during warmup phase, parse the request object before returning an error so that id value can be used in the response.

Gavin Andresen (2):
configure –enable-debug changes
Testing infrastructure: mocktime fixes

Jack Grigg (11):
Remove reference to -reindex-chainstate
Treat metrics screen as non-interactive for now
Adjust gen-manpages.sh for Zcash, use in Debian builds
Regenerate and collate Zcash manpages, delete Bitcoin ones
Update release process with gen-manpages.sh
Adjust blockheaderToJSON() for Zcash block header
Adjust fundrawtransaction RPC test for Zcash
Re-encode t-addrs in disablewallet.py with Zcash prefixes
BTC -> ZEC in paytxfee RPC docs
Update default RPC port in help strings
Fix typo in listbanned RPC keys

Jay Graber (4):
Add rpc test for prioritisetransaction
Inc num of txs in test mempool
Update release to 1.0.7, generate manpages
Add 1.0.7 release notes and update authors.md

Jonas Schnelli (23):
[net] extend core functionallity for ban/unban/listban
[RPC] add setban/listbanned/clearbanned RPC commands
[QA] add setban/listbanned/clearbanned tests
[net] remove unused return type bool from CNode::Ban()
[RPC] extend setban to allow subnets
rename json field “bannedtill” to “banned_until”
setban: rewrite to UniValue, allow absolute bantime
fix CSubNet comparison operator
setban: add RPCErrorCode
add RPC tests for setban & disconnectnode
fix missing lock in CNode::ClearBanned()
setban: add IPv6 tests
fix lock issue for QT node diconnect and RPC disconnectnode
fundrawtransaction tests
UniValue: don’t escape solidus, keep espacing of reverse solidus
[REST] add JSON support for /rest/headers/
[QA] fix possible reorg issue in rawtransaction.py/fundrawtransaction.py RPC test
[QA] remove rawtransactions.py from the extended test list
[QA] add testcases for parsing strings as values
[bitcoin-cli] improve error output
fix and extend CBitcoinExtKeyBase template
extend bip32 tests to cover Base58c/CExtKey decode
don’t try to decode invalid encoded ext keys

Jorge Timón (1):
Consensus: Refactor: Separate Consensus::CheckTxInputs and GetSpendHeight in CheckInputs

Leo Arias (1):
Fix the path to the example configuration

Luke Dashjr (1):
Fix various warnings

Matt Corallo (4):
Small tweaks to CCoinControl for fundrawtransaction
Add FundTransaction method to wallet
Add fundrawtransaction RPC method
Assert on probable deadlocks if the second lock isnt try_lock

Murilo Santana (1):
Fix sha256sum on busybox by using -c instead of –check

Paul Georgiou (1):
Update Linearize tool to support Windows paths

Pavel Vasin (1):
remove unused inv from ConnectTip()

Peter Todd (2):
Add getblockheader RPC call
Improve comment explaining purpose of MAX_MONEY constant

Philip Kaufmann (3):
use const references where appropriate
[init] add -blockversion help and extend -upnp help
make CAddrMan::size() return the correct type of size_t

Pieter Wuille (3):
Do not ask a UI question from bitcoind
Add DummySignatureCreator which just creates zeroed sigs
Reduce checkpoints’ effect on consensus.

Simon Liu (14):
Alert 1000
Alert 1001
Add assert to check alert message length is valid
Fix bug where test was generating but not saving keys to wallet on disk.
Update founders reward addresses for testnet
Keep first three original testnet fr addresses so existing coinbase transactions on testnet remain valid during upgrade. New addresses will be used starting from block 53127.
Closes #2083 and #2088. Update release process documentation
Closes #2084. Fix incorrect year in timestamp.
Closes #2112 where z_getoperationresult could return stale status.
Add mainnet checkpoint at block 67500
Add testnet checkpoint at block 38000
Closes #1969. Default fee now sufficient for large shielded tx.
Part of #1969. Changing min fee calculation also changes the dust threshold.
Part of #1969. Update tests to avoid error ‘absurdly high fee’ from change in min fee calc.

Stephen (1):
Add paytxfee to getwalletinfo, warnings to getnetworkinfo

Wladimir J. van der Laan (10):
rpc: make gettxoutsettinfo run lock-free
test: Move reindex test to standard tests
rpc: Remove chain-specific RequireRPCPassword
univalue: Avoid unnecessary roundtrip through double for numbers
rpc: Accept strings in AmountFromValue
Fix crash in validateaddress with -disablewallet
Improve proxy initialization
tests: Extend RPC proxy tests
build: Remove -DBOOST_SPIRIT_THREADSAFE
tests: Fix bitcoin-tx signing testcase

dexX7 (1):
Return all available information via validateaddress

mruddy (1):
add tests for the decodescript rpc. add mention of the rpc regression tests to the testing seciton of the main readme.

nomnombtc (9):
add script to generate manpages with help2man
add gen-manpages.sh description to README.md
add autogenerated manpages by help2man
add doc/man/Makefile.am to include manpages
add doc/man to subdir if configure flag –enable-man is set
add conditional for –enable-man, default is yes
change help string –enable-man to –disable-man
regenerated all manpages with commit tag stripped, also add bitcoin-tx
improved gen-manpages.sh, includes bitcoin-tx and strips commit tag, now also runs binaries from build dir by default, added variables for more control

zathras-crypto (1):
Exempt unspendable transaction outputs from dust checks

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs